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 a b s t r a c t

The Order-Maintenance (OM) data structure maintains a total order list of items for insertions, deletions, and com-
parisons. As a basic data structure, OM has many applications, such as maintaining the topological order, 𝑘-core, 
and 𝑘-truss in graphs, and maintaining ordered sets in the Unified Modelling Language (UML) specification. The 
prevalence of multicore machines suggests parallelizing such a basic data structure. This paper proposes a new 
parallel OM data structure that supports insertions, deletions, and comparisons in parallel. Specifically, parallel 
insertions and deletions are efficiently synchronized using locks, which achieves up to 7x and 5.6x speedups 
with 64 workers. One significant advantage is that comparisons are lock-free, enabling them to execute highly 
in parallel with other insertions and deletions, which achieves up to 34.4x speedups with 64 workers. Typical 
real applications maintain order lists that always have a much larger portion of comparisons than insertions and 
deletions. For example, in core maintenance, the number of comparisons is up to 297 times larger compared with 
insertions and deletions in certain graphs. This shows that the lock-free order comparison provides a significant 
practical contribution.

1.  Introduction

The well-known Order-Maintenance (OM) data structure [1–3] main-
tains a total order of unique items in an order list, denoted as 𝕆, by 
following three operations:

• Order(𝕆, 𝑥, 𝑦): determine if 𝑥 precedes 𝑦 in the ordered list 𝕆, de-
noted as 𝑥 ⪯ 𝑦, supposing both 𝑥 and 𝑦 are in 𝕆.

• Insert(𝕆, 𝑥, 𝑦): insert a new item 𝑦 after 𝑥 in the ordered list 𝕆, 
supposing that 𝑥 is in 𝕆 and 𝑦 is not in 𝕆.

• Delete(𝕆, 𝑥): delete 𝑥 from the ordered list 𝕆, supposing that 𝑥 is in 
𝕆.

Applications. The OM data structure is widely used for cohesive sub-
graph algorithms, including 𝑘-core maintenance [4–6] and 𝑘-truss main-
tenance [7], in dynamic graphs, where the graph has frequently inserted 
and removed edges. After computing the 𝑘-core and 𝑘-truss, they are 
maintained when updating edges instead of being recomputed ineffi-
ciently. The fundamental issue is that all vertices are maintained in a 
total order, the so-called 𝑘-order, which can be used to avoid repeated 
traversing of edges and thus improve performance. Similarly, the OM 
data structure can be used to maintain the topological order of ver-
tices in directed acyclic graphs after dynamically inserting or removing 
edges [8,9]. Additionally, ordered sets are widely used in Unified Mod-
eling Language (UML) Specifications [10], e.g., a display screen (an OS’s 
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representation) has a set of windows, but furthermore, the set is ordered, 
so are the ordered bag and sequence. In summary, the OM data struc-
ture is a building block for a batch of algorithms and is widely applied 
in extensive applications.

Sequential. In the sequential case, the OM data structure has been well 
studied. The naive idea is to use a balanced binary search tree [11]. 
All three operations can be performed in 𝑂(log𝑁) time, where there 
are at most 𝑁 items in the ordered list 𝕆. In [1,2], the authors propose 
an OM data structure that supports all three operations in 𝑂(1) time. 
The idea is that all items in 𝕆 are linked as a double-linked list. Each 
item is assigned a label to indicate its order. We can perform the Order
operation by comparing the labels of two items in 𝑂(1) time. Also, the
Delete operation costs 𝑂(1) time without changing other labels. For the
Insert(𝑥, 𝑦) operation, 𝑦 can be directly inserted after 𝑥 with 𝑂(1) time, 
if there exists label space between 𝑥 and its successors; otherwise, a rela-
bel procedure is triggered to rebalance the labels, which costs amortized 
𝑂(log𝑁) time per insertion. After introducing a list of sublists structure, 
the amortized running time of the relabel procedure can be optimized to 
𝑂(1) per insertion. Thus, the Insert operation has 𝑂(1) amortized time.

Parallel. Due to the prevalence of the multicore shared-memory archi-
tecture, it immediately suggests parallelizing the OM data structure. In 
this paper, we present a new concurrent OM data structure. In terms of 
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Table 1 
The worst-case and best-case work, depth complexities 
of parallel OM operations, where 𝑚 is the number of 
operations executed in parallel,  is the total number 
of workers, and † is the amortized complexity.

 Parallel  Worst-case (𝑂)  Best-case (𝑂)
 operation    time    time
 Insert 𝑚† 𝑚† 𝑚


+ 𝑚† 𝑚† 1† 𝑚


†

 Delete 𝑚 𝑚 𝑚

+ 𝑚 𝑚 1 𝑚

 Order 𝑚 1 𝑚


𝑚 1 𝑚


parallel Insert and Delete operations, we use locks for synchroniza-
tion without allowing interleaving. In the average case, there is a high 
probability that multiple Insert or Delete operations occur in different 
positions of 𝕆 so that these operations can execute completely in par-
allel. For the Order operation, we adopt a lock-free mechanism, which 
allows to run completely in parallel for any pair of items in 𝕆. To im-
plement the lock-free Order, we devise a new algorithm for the Insert
operation that always maintains Order Snapshot for all items, even if 
many relabel procedures are triggered. Here, the Order Snapshot means 
that the labels of items indicate their order correctly. As Insert opera-
tions always maintain the Order Snapshot, we do not need to lock a pair 
of items when comparing their labels in parallel. In other words, lock-
free Order operations are based on Insert operations that preserve the 
Order Snapshot.

We analyze our parallel OM operations in the work-depth model [11,
12], where the work, denoted as  , is the total number of operations 
that are used by the algorithm, and the depth, denoted as , is the 
longest length of sequential operations [13]. The expected running time 
is 𝑂(∕ +) by using  workers with load balancing among those. 
In particular, the work and depth terms are equivalent for sequential 
algorithms.

Table 1 compares the worst-case and best-case work and depth com-
plexities for the three OM operations when running the 𝑚 operations 
of the same kind in parallel. In the best case, all three operations have 
𝑂(𝑚) work and 𝑂(1) depth. However, Insert has worst-case 𝑂(𝑚) work 
and 𝑂(𝑚) depth; such a worst-case is easy to construct by inserting 𝑚
items into the same position of 𝕆, and thus all insertions are reduced 
to running sequentially. The Delete operation also has the worst-case 
𝑂(𝑚) work and 𝑂(𝑚) depth; but this worst case only happens when all 
deletions cause a blocking chain, which has a very low probability. Es-
pecially, since the Order is lock-free, it always has 𝑂(𝑚) work and 𝑂(1)
depth in the worst and best cases. This is why Order operation can al-
ways run in parallel and has a great speedup for multicore machines. The 
lock-free Order operation is an important contribution of this work.

We conduct extensive experiments on a 64-core machine over a vari-
ety of test cases to evaluate the parallelism of the new parallel OM data 
structure. With 64 workers, our parallel Insert and Delete achieve 
up to 7x and 5.6x speedups; our parallel Order achieves up to 34.4x 
speedups.

The rest of this paper is organized as follows. The related work is in 
Section 2. The preliminaries are given in Section 3. Our parallel OM data 
structure is discussed in Section 4. We conduct experimental studies in 
Section 5 and conclude this work in Section 6.

2.  Related work

In [14], Dietz proposes the first order data structure, with Insert
and Delete having 𝑂(log 𝑛) amortized time and Order having 𝑂(1) time. 
In [15], Tsakalidis uses BB[𝛼] trees to improve the update bound to 
𝑂(log 𝑛) and then to 𝑂(1) amortized time. In [1], Dietz et al. propose the 
fastest order data structure, which has Insert in 𝑂(1) amortized time,
Delete in 𝑂(1) time, and Order in 𝑂(1) time. In [2], Bender et al. propose 
significantly simplified algorithms that match the bounds in [1].

A special case of OM is the file maintenance problem [1,2], which 
is to store 𝑛 items in an array of size 𝑂(𝑛). File maintenance has four 
operations, i.e., insert, delete, scan-right (scan next 𝑘 items starting from 
𝑒), and scan-left (analogous to scan-right).

For the parallel or concurrent OM data structure, there exists lit-
tle work [3,16] to the best of our knowledge. In [16], the order list is 
split into multiple parts and organized as a B-tree, which sacrifices the 
𝑂(1) time for three operations; also, the relevant nodes in the B-tree 
are locked for synchronization. In [3], a parallel OM data structure is 
proposed specifically for series-parallel (SP) maintenance, which identi-
fies whether two accesses are logically independent. Several parallelism 
strategies are present for the OM data structure combined with SP main-
tenance. We apply the strategy of splitting a full group into our new 
parallel OM data structure.

3.  Preliminaries

In this section, for the OM data structure, we revisit the detailed 
steps of the sequential version [1–3]. This is the background to discuss 
the parallel version in the next section.

The idea is that items in the total order are assigned labels to indicate 
the order. Typically, each label can be stored as an 𝑂(log𝑁) bits integer, 
where 𝑁 is the maximal number of items in 𝕆. Assume it takes 𝑂(1)
time to compare two integers. The Order operation requires 𝑂(1) time 
by comparing labels; also, the Delete operation requires 𝑂(1) time since 
after deleting one item all other labels of items are not affected.

In terms of the Insert operation, efficient implementations provide 
𝑂(1) amortized time. First, a two-level data structure [3] is used. That 
is, each item is stored in the bottom-list, which contains a group of con-
secutive elements; each group is stored in top-list, which can contain 
Ω(log𝑁) items. Both the top-list and the bottom-list are organized as 
double-linked lists, and we use 𝑥.𝑝𝑟𝑒 and 𝑥.𝑛𝑒𝑥𝑡 to denote the predeces-
sor and successor of 𝑥, respectively. Second, each item 𝑥 has a top-label 
𝐿𝑡(𝑥), which equals to 𝑥’s group label denoted as 𝐿𝑡(𝑥) = 𝐿(𝑥.𝑔𝑟𝑜𝑢𝑝), and 
bottom-label 𝐿𝑏(𝑥), which is 𝑥’s label. Integer 𝐿𝑡 is in the range [0, 𝑁2]
and integer 𝐿𝑏 in the range [0, 𝑁].

Initially, there can be 𝑁 ′ items in 𝕆 (𝑁 ′ ≤ 𝑁), which are contained 
in 𝑁 ′ groups, separately. Each group is assigned a top-label 𝐿𝑡 with an 
𝑁 gap between neighbours, e.g., groups 𝑔1, 𝑔2, 𝑔3,… , 𝑔1000 can have top-
labels 𝑁, 2𝑁, 3𝑁,… , 1000𝑁 . Each item is assigned a bottom-label 𝐿𝑏 as 
(⌊𝑁∕2⌋ − 1), e.g., a single item 𝑥1 in the group 𝑔1 has a bottom-label 
(⌊𝑁∕2⌋ − 1).

Definition 1. [Order Snapshot] The OM data structure maintains the 
Order Snapshot for 𝑥 precedes 𝑦 in the total order, denoted as ∀𝑥, 𝑦 ∈
𝕆 ∶ 𝑥 ⪯ 𝑦 ≡ 𝐿𝑡(𝑥) < 𝐿𝑡(𝑦) ∨ (𝐿𝑡(𝑥) = 𝐿𝑡(𝑦) ∧ 𝐿𝑏(𝑥) < 𝐿𝑏(𝑦))

The OM data structure maintains the Order Snapshot defined in Def-
inition 1. In other words, to determine the order of 𝑥 and 𝑦, we first 
compare their top-labels (group labels) of 𝑥 and 𝑦; if they are the same, 
we continually compare their bottom labels.

3.1.  Insert

The operation Insert(𝕆, 𝑥, 𝑦) is implemented by inserting 𝑦 after 𝑥
in 𝑥’s bottom-list, assigning 𝑦 the label 𝐿𝑏(𝑦) = 𝐿𝑏(𝑥) + ⌊(𝐿𝑏(𝑥.𝑛𝑒𝑥𝑡) −
𝐿𝑏(𝑥))∕2⌋, and setting 𝑦 in the same group as 𝑥 with 𝑦.𝑔𝑟𝑜𝑢𝑝 = 𝑥.𝑔𝑟𝑜𝑢𝑝
such that 𝐿𝑡(𝑦) = 𝐿𝑡(𝑥). If 𝐿𝑏(𝑥.𝑛𝑒𝑥𝑡) − 𝐿𝑏(𝑥) < 2, the 𝑥’s group is full, 
which triggers a relabel operation. Otherwise, 𝑦 can successfully obtain 
a new label, then the insertion is complete in 𝑂(1) time. The relabel 
operation has two steps. First, the full group is split into many new 
groups, each of which contains at most log𝑁2  items, and new labels 𝐿𝑏
are uniformly assigned for items in new groups. Second, newly created 
groups are inserted into the top-list, if new group labels 𝐿𝑡 can be as-
signed. Otherwise, we have to rebalance the group labels. That is, from 
the current group 𝑔, we continuously traverse the successors 𝑔′ until 
𝐿(𝑔′) − 𝐿(𝑔) > 𝑗2, where 𝑗 is the number of traversed groups. Then, new 
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Fig. 1. An example of the OM data structure with 𝑁 = 16. The squares are groups located in a single double-linked top-list with a head ℎ𝑡 and a tail 𝑡𝑡. The numbers 
at the top of the squares are group labels. The circles are items with pointers to their own groups, located in a single double-linked bottom-list. The numbers at 
the bottom of circles are item labels. (a) the initial state of 𝕆 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. (b) the intermediate state of 𝕆 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}. (c) after inserting a new item 𝑢
(dashed circles) after 𝑣1, we get 𝕆 = {𝑣1, 𝑢, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} by inserting a new group 𝑔 (dashed square).

group labels can be assigned to groups between 𝑔 and 𝑔′ with a 𝐿(𝑔′)−𝐿(𝑔)𝑗
gap, in which newly created groups can be inserted.

There are three important features in the implementation Insert: 
(1) each group, stored in the top-list, can contain Ω(log𝑁) items, so 
the total number of inserted groups is Ω(𝑁∕ log𝑁) when inserting Ω(𝑁)
items; (2) the amortized cost of splitting groups is Ω(1) per insert; (3) 
the amortized cost of inserting a new group into the top-list is Ω(log𝑁)
per insertion. Thus, each Insert operation only costs amortized 𝑂(1)
time.

Example 1. [Insert]
Fig. 1 shows a simple example of the OM data structure. For simplic-

ity, we choose 𝑁 = 24 = 16, so that for items the top-labels 𝐿𝑡 are 8-bit 
integers (above groups as group labels), and the bottom labels are 4-bit 
integers (below items).

Fig. 1(a) shows an initial state of the two-level lists and labels. The 
top-list has head ℎ𝑡 and tail 𝑡𝑡 labeled by 0 and 162 − 1, respectively, 

and includes four groups 𝑔1 to 𝑔4 labeled with gap 16. The bottom-list 
has head ℎ𝑏 and tail 𝑡𝑏 without labels, and includes four items 𝑣1 to 𝑣4
located in four groups 𝑔1 to 𝑔4 with the same labels 7.

Fig. 1(b) shows an intermediate state after a number of Insert and
Delete operations. We can see that there does not exist a label space 
between 𝑣1 and 𝑣2. Both 𝑣1 and 𝑣2 are located in the group 𝑔1. We get 
that 𝑔1 is full when inserting a new item after 𝑣1.

In Fig. 1(c), a new item 𝑢 is inserted after 𝑣1. But the group 𝑔1 is 
full (no label space after 𝑣1), which triggers a relabel process. That is, 
the group 𝑔1 is split into two groups, 𝑔1 and 𝑔; first, the old group 
𝑔1 has a single 𝑣1, which can assign 𝐿𝑏, 15∕2 = 7; second, the newly 
created group 𝑔 contains 𝑣2 and 𝑣3, which can assign 𝐿𝑏 with a uni-
form distribution within their own group, 15∕3 = 5 and 2(15∕3) = 10, 
respectively. However, there is no label space between 𝑔1 and 𝑔2 to in-
sert the new group 𝑔, which will trigger a rebalance operation. That 
is, we traverse groups from 𝑔1 to 𝑔4, where 𝑔4 is the first that satisfies 
𝐿(𝑔4) − 𝐿(𝑔1) = 15 > 𝑗2 (𝑗 = 3). Then, both 𝑔2 and 𝑔3 are assigned new
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top-labels as 20 and 25, respectively, which have a gap of 5. Now, 𝑔 can 
be inserted after 𝑔1 with 𝐿(𝑔) = 𝐿(𝑔2) + (𝐿(𝑔2) − 𝐿(𝑔1))∕2 = 17. Finally, 
we can insert 𝑢 successfully after 𝑣1 in 𝑔1, with 𝐿𝑏(𝑢) = 𝐿𝑏(𝑣1) + (15 −
𝐿𝑏(𝑣1))∕2 = 11. 

3.2.  Atomic primitives

As shown in Algorithm 1, the CAS atomic primitive takes three ar-
guments, a variable (location) 𝑥, an old value 𝑎 and a new value 𝑏. It 
checks the value of the variable 𝑥, and if it equals to the old value 𝑎, it 
updates the pointer to the new value 𝑏 and then returns true; otherwise, 
it returns false to indicate that the updating fails. Here, we use a pair 
of angular brackets, ⟨…⟩, to indicate that the operations in between are 
executed atomically.

Algorithm 1: CAS(𝑥, 𝑎, 𝑏).
1 ⟨ if 𝑥 = 𝑎 then 𝑥 ← 𝑏; return true 
2 else  return false ⟩ // ⟨…⟩ atomic

The modern multicore architectures support atomic primitives 
for reading or writing 64-bit integers. Typically, we assume that 
the order list 𝕆 has at most 232 items. In this case, the bottom-
labels 𝐿𝑏 are 32-bit integers and the top-labels 𝐿𝑡 are 64-bit
integers.

4.  Parallel order maintenance data structure

In this section, we present the parallel version of the OM data struc-
ture. We start with the data structure definition and memory manage-
ment. Then, we discuss the parallel Delete operations. Continually, we 
discuss the parallel Insert operation and show that the Order Snap-
shot is preserved at any steps, including the relabel process, which is 
the main contribution of this work. Finally, we present the parallel
Order operation, which is lock-free and thus can be executed highly in
parallel.

4.1.  Data structure definition and memory management

We allocate two arrays in memory for one OM data structure. The 
first array Items stores all 𝑁 items, and the second array Groups stores 
all 𝑁 group nodes. Each item 𝑥 has pointers that point to the previous 
item, the next item, and the parent group node. Similarly, each group 
node 𝑔 has pointers that point to the previous group and the next group. 
All pointers are implemented using the array index rather than referenc-
ing a real memory address. Additionally, we need to allocate two arrays 
ReclaimedItems and ReclaimedGroups to store the reclaimed indices 
of items in Items and groups in Groups reclaimed (ready to be allocated 
to new items and groups), respectively. Algorithm 2 shows the detailed 
memory layout of the four allocated arrays.

An issue is how to manage the memory for Delete operations (de-
scribed in Algorithm 3). Once an item 𝑥 and a group 𝑔 are deleted 
from Items and Groups, their index is added to ReclaimedItems and 
ReclaimedGroups without physically deallocating the memory, respec-
tively. The index of the deleted item 𝑥 and the deleted group 𝑔 are 
added to ReclaimedItems and ReclaimedGroups for recycling, respec-
tively. When a new item 𝑥 and a group 𝑔 are inserted, we can obtain 
a free item space and a free group space from ReclaimedItems and 
ReclaimedGroups, respectively.

This method only needs to allocate the memory once, thereby avoid-
ing the frequent memory allocation for each inserted item or group. 
However, if there are more than 𝑁 items or groups, all arrays need to 
be resized to obtain a larger capacity than before, by allocating new 
large arrays and copying the data from the old arrays to the new ar-
rays. Each time, we can double the capacity of the arrays to reduce the 
number of memory copy operations.

Algorithm 2: Memory layout for items and groups stored.
1 Struct Item contains
2 𝑝𝑟𝑒: int 
3 𝑛𝑒𝑥𝑡: int
4 𝑙𝑎𝑏𝑒𝑙: int with 32-bits
5 𝑔𝑟𝑜𝑢𝑝: int
6 𝑙𝑖𝑣𝑒: bool
7 Struct Group contains
8 𝑝𝑟𝑒: int
9 𝑛𝑒𝑥𝑡: int
10 𝑙𝑎𝑏𝑒𝑙: int with 64-bits
11 𝑙𝑖𝑣𝑒: bool
12 Items ← new Item[𝑁] as an array to store 𝑁 items
13 Groups ← new Group[𝑁] as an array to store 𝑁 groups
14 ReclaimedItems ← new int[𝑁] as an array to store the indices 

of reclaimed items
15 ReclaimedGroups ← new int[𝑁] as an array to store the indices 

of reclaimed groups

4.2.  Parallel delete

4.2.1.  Algorithm
Algorithm 3 shows the detailed steps of parallel Delete. For each 

item 𝑥 in 𝕆, we use a Boolean status 𝑥.𝑙𝑖𝑣𝑒 to indicate if 𝑥 is in 𝕆 or 
has been removed. Initially 𝑥.𝑙𝑖𝑣𝑒 is true. We use the atomic primi-
tive CAS to set 𝑥.𝑙𝑖𝑣𝑒 from true to false to logically remove the item 
𝑥 first (line 1). The benefit of such deletion is that repeated deletion 
of 𝑥 can be avoided by returning failure, and then 𝑥 does not have 
to be locked for continuous operations. In lines 2–6 and 13, we re-
move 𝑥 from the bottom-list in 𝕆. To do this, we first lock 𝑦 = 𝑥.𝑝𝑟𝑒, 
𝑥, and 𝑥.𝑛𝑒𝑥𝑡 in order to avoid deadlock (lines 2–4). Here, after locking 
𝑦, we have to check that 𝑦 still equals 𝑥.𝑝𝑟𝑒 in case 𝑥.𝑝𝑟𝑒 is changed by 
other workers (line 3). Then we can safely delete 𝑥 from the bottom-
list, and set 𝑥’s 𝑝𝑟𝑒, 𝑛𝑒𝑥𝑡, 𝐿𝑏, and 𝑔𝑟𝑜𝑢𝑝 to empty (lines 6 and 7). For 
the group 𝑔 = 𝑥.𝑔𝑟𝑜𝑢𝑝, we need to delete 𝑔 when it is empty, which 
is analogous to deleting 𝑥 (lines 8–14). We use the atomic primitive
CAS to set 𝑔.𝑙𝑖𝑣𝑒 from true to false to logically remove 𝑔 from the 
list (line 8). Finally, we unlock all the locked items in reverse order
(line 15).

Algorithm 3: Parallel-delete(𝕆, 𝑥).

1 if not CAS(𝑥.𝑙𝑖𝑣𝑒, true, false) then return fail( // logically 
delete 𝑥) 

2 𝑦 ← 𝑥.𝑝𝑟𝑒; Lock(𝑦)
3 if 𝑦 ≠ 𝑥.𝑝𝑟𝑒 then Unlock(𝑦); goto line 2
4 Lock(𝑥); Lock(𝑥.𝑛𝑒𝑥𝑡)
5 𝑔 ← 𝑥.𝑔𝑟𝑜𝑢𝑝
6 delete 𝑥 from bottom-list by setting 𝑥.𝑝𝑟𝑒.𝑛𝑒𝑥𝑡 ← 𝑥.𝑛𝑒𝑥𝑡 and 

𝑥.𝑛𝑒𝑥𝑡.𝑝𝑟𝑒 ← 𝑥.𝑝𝑟𝑒
7 set 𝑥.𝑝𝑟𝑒, 𝑥.𝑛𝑒𝑥𝑡, 𝐿𝑏(𝑥), and 𝑥.𝑔𝑟𝑜𝑢𝑝 to ∅
8 if |𝑔| = 0 ∧ CAS(𝑔.𝑙𝑖𝑣𝑒, true, false) then
9 𝑔′ ← 𝑔.𝑝𝑟𝑒; Lock(𝑔′)
10 if 𝑔′ ≠ 𝑔.𝑝𝑟𝑒 then Unlock(𝑔′); goto line 9
11 Lock(𝑔); Lock(𝑔.𝑛𝑒𝑥𝑡)
12 delete 𝑔 from top-list by setting 𝑔.𝑝𝑟𝑒.𝑛𝑒𝑥𝑡 ← 𝑔.𝑛𝑒𝑥𝑡 and 

𝑔.𝑛𝑒𝑥𝑡.𝑝𝑟𝑒 ← 𝑔.𝑝𝑟𝑒
13 set 𝑔.𝑝𝑟𝑒, 𝑔.𝑛𝑒𝑥𝑡, and 𝐿(𝑔) to ∅
14 Unlock(𝑔.𝑛𝑒𝑥𝑡); Unlock(𝑔); Unlock(𝑔′)
15 Unlock(𝑥.𝑛𝑒𝑥𝑡); Unlock(𝑥); Unlock(𝑦); 
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4.2.2.  Correctness
For deleting the item 𝑥, we lock three items, 𝑥.𝑝𝑟𝑒, 𝑥, and 𝑥.𝑛𝑒𝑥𝑡 in 

order. Similarly, for deleting the group 𝑔, and lock 𝑔.𝑝𝑟𝑒, 𝑔 and 𝑔.𝑛𝑒𝑥𝑡 in 
order. Therefore, there are no blocking cycles and thereby no deadlock. 
After removing the item 𝑥 from the bottom-list, the bottom-labels of all 
the other items in 𝕆 are not changed. If the group 𝑔 becomes empty 
after deleting 𝑥, 𝑔 is also removed from the top-list, and the top-labels 
of all the other groups are not changed. Therefore the Order Snapshot 
is always preserved.

4.2.3.  Complexities
Suppose there are 𝑚 items to be deleted in the OM data structure. The 

total work is 𝑂(𝑚). In the best case, 𝑚 items can be deleted in parallel 
by  workers with 𝑂(1) depth, so that the total running time is 𝑂(𝑚∕). 
In the worst-case, 𝑚 items have to be deleted one by one, e.g.  workers 
are blocked as a chain, with 𝑂(𝑚) depth, so that the total running time 
is 𝑂(𝑚∕ + 𝑚).

However, for deleting multiple items in parallel, a blocking chain is 
unlikely to appear when there is a large number of items with several 
workers. For example, given a list of three items 𝑥1, 𝑥2 and 𝑥3, three 
workers 𝑝1, 𝑝2 and 𝑝3 delete the three items, respectively. In the case 
of three workers running simultaneously, we have 1) 𝑝3 first locks 𝑥2
and 𝑥3, 2) 𝑝2 lock 𝑥1 and wait to lock 𝑥2 and 𝑥3 (both already locked 
by 𝑝3), and 3) 𝑝1 waits to lock 𝑥1 (already locked by 𝑝2) and 𝑥2 (al-
ready locked by 𝑝3). We have 𝑝1 waiting for 𝑝2 and 𝑝2 waiting for 
𝑝3, which forms a blocking chain and reduces to sequential. For an-
other example, given a list of 1000 items 𝑥1, 𝑥2,… , 𝑥1000, three work-
ers 𝑝1, 𝑝2 and 𝑝3 delete the three items 𝑥1, 𝑥100 and 𝑥200, respectively. 
Three workers cannot form a blocking chain and can perform in a 
highly parallel way. In our experiments, there are millions of items 
and at most 64 workers, so the blocking chain of workers is unlikely to
exist.

4.3.  Parallel insert

4.3.1.  Algorithm
Algorithm 4 shows the detailed steps for inserting 𝑦 after 𝑥. Within 

this operation, we lock 𝑥 and its successor 𝑧 = 𝑥.𝑛𝑒𝑥𝑡 in that order (lines 
1 and 7). For obtaining a new bottom-label for 𝑦, if 𝑥 and 𝑧 are in the 
same group, 𝐿𝑏(𝑧) is the right bound; otherwise, 𝑁 is the right bound, 
supposing 𝐿𝑏 is a (log𝑁)-bit integer (line 2). If there does not exist a 
label gap in the bottom-list between 𝑥 and 𝑥.𝑛𝑒𝑥𝑡, we know that 𝑥.𝑔𝑟𝑜𝑢𝑝
is full, and thus the Relabel procedure is triggered to make label space 
for 𝑦 (line 3). Then, 𝑦 is inserted into the bottom-list between 𝑥 and 𝑥.𝑛𝑒𝑥𝑡
(line 6), in the same group as 𝑥 (line 4), by assigning a new bottom-label 
(line 5).

The Relabel(𝑥) procedure splits the full group of 𝑥. We lock 𝑥’s group 
𝑔0 and 𝑔0’s successor 𝑔.𝑛𝑒𝑥𝑡 (line 9). We also lock all items 𝑦 ∈ 𝑔0 except 
𝑥 and 𝑧 = 𝑥.𝑛𝑒𝑥𝑡, as both 𝑥 and 𝑧 are already locked in line 1 (line 10). 
To split the group 𝑔0 into multiple new smaller groups, we traverse the 
items 𝑦 ∈ 𝑔0 in reverse order by three steps (lines 11 - 15). First, if there 
does not exist a label gap in the top-list between 𝑔0 and 𝑔0.𝑛𝑒𝑥𝑡, the
Rebalance procedure is triggered to make label space for inserting a 
new group with assigned labels (lines 12 and 13). Second, we split log𝑁2
items 𝑦 from 𝑔0 in reverse order to the new group 𝑔, which maintains 
the Order Snapshot (line 14). Third, we assign a new 𝐿𝑏 to all items in 
the new group 𝑔 by using the AssignLabel procedure (line 15), which 
also maintains the Order Snapshot. The for-loop (lines 11 - 15) stops if 
fewer than log𝑁2  items are left in 𝑔0. We assign a new 𝐿𝑏 to all left items 
in 𝑔0 by using the AssignLabel procedure (line 16). Finally, we unlock 
all locked groups and items (line 17).

In the Rebalance(𝑔) procedure, we make label space after 𝑔 to insert 
new groups. Starting from 𝑔.𝑛𝑒𝑥𝑡, we traverse groups 𝑔′ in order until 
𝑤 > 𝑗2 by locking 𝑔′ if necessary (𝑔 and 𝑔.𝑛𝑒𝑥𝑡 are already locked in 
line 9), where 𝑗 is the number of visited groups and 𝑤 is the label gap 
𝐿(𝑔′) − 𝐿(𝑔) (lines 19–22). That means 𝑗 items will share a total of 𝑤 > 𝑗2

label space. All groups whose labels should be updated are added to the 
set 𝐴 (line 21). We assign new labels to all groups in 𝐴 by using the
AssignLabel procedure (line 23), which maintains the Order Snapshot. 
Finally, we unlock groups locked in line 21 (line 24).

Notably, in the AssignLabel(𝐴,, 𝑙0, 𝑤) procedure, we assign labels 
without affecting the Order Snapshot, where the set 𝐴 includes all el-
ements whose labels need updating,  is the label function, 𝑙0 is the 
starting label, and 𝑤 is the label space. Note that  can correctly return 
the bounded labels, e.g., 𝐿𝑏(𝑥.𝑛𝑒𝑥𝑡) = 𝑁 when 𝑥 is at the tail of its group 
𝑥.𝑔𝑟𝑜𝑢𝑝. For each 𝑧 ∈ 𝐴 in order, we first correctly assign a temporary 
label (𝑧) (line 27), which can replace its real label (𝑧) at the right 
time by using the stack 𝑆 (lines 28 - 32). Specifically, for each 𝑧 ∈ 𝐴
in order, if its temporary label (𝑧) is between (𝑧.𝑝𝑟𝑒) and (𝑧.𝑛𝑒𝑥𝑡), 
we can safely replace its label by updating (𝑧) as (𝑧) (lines 29 and 
30), which maintains the Order Snapshot; otherwise, 𝑧 is added to the 
stack 𝑆 for further propagation (line 32). For propagation, when one 
element 𝑧 replaces the labels (line 30), indicating that all elements in 
stack 𝑆 can find enough label space, each 𝑥 ∈ 𝑆 can be popped out by 
replacing its label (line 31). This propagation still maintains the Order
Snapshot.

Example 2. [Parallel Insert] Fig. 1 shows an example for parallel
Insert. In Fig. 1(b), we lock 𝑣1 and 𝑣2 in order when inserting 𝑢 af-
ter 𝑣1. However, there is no label space, and the group 𝑔1 is full, which 
triggers the Relabel procedure. For the first step of relabelling, the other 
item 𝑣3 in group 𝑔1 is locked to split the group 𝑔1.

In Fig. 1(c), we lock 𝑔1 and 𝑔2 in order when inserting a new group 
𝑔 after 𝑔1, which triggers the Rebalance procedure on the top-list. For 
rebalancing, 𝑔3 and 𝑔4 are locked in order. The new temporary labels 𝐿𝑡

of 𝑔2 and 𝑔3 are generated as 20 and 25. To replace real labels with 
temporary ones, we traverse 𝑔2 and 𝑔3 in order. First, we find that 
𝐿(𝑔1) < 𝐿(𝑔2) < 𝐿(𝑔3) as 15 < 20 < 17 is false, so that 𝑔2 is added to 
the stack such that 𝑆 = {𝑔2}. Second, when traversing 𝑔3, we find that 
𝐿(𝑔2) < 𝐿(𝑔3) < 𝐿(𝑔4) as 16 < 25 < 30 is true, so that 𝐿(𝑔3) is replaced as 
25. In this case, the propagation of 𝑆 begins, and 𝑔2 is popped out with 
𝐿(𝑔2) replaced as 20. Finally, 𝑔3 and 𝑔4 are unlocked, and the Rebalance
procedure finishes.

After rebalancing, the new group 𝑔 can be inserted after 𝑔1 with 
𝐿(𝑔1) = 17. Relabeling continues. The item 𝑣3 is split out to 𝑔 with 
𝐿𝑏(𝑣3) = 15 ∧ 𝐿𝑡(𝑣3) = 17 maintaining the Order Snapshot; similarly, 𝑣2
is also split out to 𝑔. Now, both 𝑣2 and 𝑣3 require a new 𝐿𝑏 to be as-
signed by the AssignLabel procedure. The new temporary label 𝐿𝑏
of 𝑣2 and 𝑣3 are generated as 5 and 10, respectively. For replacement, 
we traverse 𝑣2 and 𝑣3 in order by two steps. First, for 𝑣2, we find that 
𝐿𝑏(𝑣2) < 𝐿𝑏(𝑣3) is true, so that 𝐿𝑏(𝑣2) is replaced as 5. Second, for 𝑣3, we 
find that 𝐿𝑏(𝑣2) < 𝐿𝑏(𝑣3) is true, so that 𝐿𝑏(𝑣3) is replaced as 10 There is 
no further propagation since the stack 𝑆 is empty. Now, only one item 
𝑣1 is left in 𝑔1 and 𝐿𝑏(𝑣1) is set to 7. Finally, the new item 𝑢 is inserted 
after 𝑣1 in 𝑔1 with 𝐿𝑏(𝑢) = 11 ∧ 𝐿𝑡(𝑢) = 15. 

Example 3  (Assign Label).  In Fig. 2, we show an example of how the
AssignLabel procedure preserves the Order Snapshot. The label space 
is from 0 to 15, shown as indices. There are four items 𝑣1, 𝑣2, 𝑣3, and 
𝑣4 with initial labels 1, 2, 3, and 14, respectively; also, four temporary 
labels, 3, 6, 9, and 12, are assigned with uniform distribution to them. We 
traverse items from 𝑣1 to 𝑣4 in order. First, 𝑣1 and 𝑣2 are added to the 
stack 𝑆. Then, 𝑣3 can safely replace its old label with its new temporary 
label 9, which makes space for 𝑣2 that is at the top of 𝑆. So, we pop out 
𝑣2 from 𝑆 and 𝑣2 gets its new label 6, which makes space for 𝑣1 that 
is at the top of 𝑆. So, we pop out 𝑣1 from 𝑆 and 𝑣1 gets its new label 
3. Finally, 𝑣4 can safely get its new label 12. In a word, updating the 
𝑣3’s label will repeatedly make space for 𝑣2 and 𝑣1 in the stack. During 
such a process, we observe that each time an old label is updated with 
a new temporary label, the labels always correctly indicate the order. 
Therefore, the Order Snapshot is always preserved and parallel Order
operations can take place. 
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Fig. 2. An example of the AssignLabel procedure.

4.3.2.  Correctness
There are four lock operations. First, we lock items 𝑥 and 𝑥.𝑛𝑒𝑥𝑡 in 

order (lines 1 and 7). Second, in the Relabel procedure, we lock 𝑔0
and 𝑔0.𝑛𝑒𝑥𝑡 in order (lines 9 and 17). Third, we lock all items in the 
group 𝑔0 except 𝑥 and 𝑧 that have been locked in line 1 (lines 9, 10, and 
17) in order. Finally, we lock a batch of group 𝑔′ in the while-loop in 
order (lines 21 and 24). We can see that all four locking operations lock 
items or groups in the order of their double-linked list from head to tail. 
Therefore, there are no blocking cycles and thereby no deadlock.

In Algorithm 4, there are two cases where the labels are updated: 
splitting groups (lines 11–15) and assigning labels (lines 15, 16, and 23) 
by using the AssignLabel procedure (lines 25–32). Intuitively, to prove 
that the Order Snapshot is preserved, we need to show that the labels 
can always correctly indicate the order at any time they are updating, 
including splitting groups and assigning labels. Specifically, we prove 
that the Order Snapshot is preserved with Theorems 1 and 2.
Theorem 1.  When splitting full groups (line 14), the Order Snapshot is 
preserved. 
Proof.  The algorithm splits log𝑁2  items 𝑦 out from 𝑔0 into the new group 
𝑔 (line 14), where each 𝑦 ∈ 𝑔0 is traversed in reverse order within the 
for-loop (lines 11–15). For this, the invariant of the for-loop is that 𝑦 has 
largest 𝐿𝑏 within 𝑔0; the new group 𝑔 has 𝐿(𝑔) > 𝐿(𝑔0); also, 𝑦 satisfies 
the Order Snapshot:
(∀𝑥 ∈ 𝑔0 ∶ 𝑥 ≠ 𝑦 ⟹ 𝐿𝑏(𝑦) > 𝐿𝑏(𝑥))

∧ (𝐿(𝑔0) < 𝐿(𝑔)) ∧ (𝑦.𝑝𝑟𝑒 ⪯ 𝑦 ⪯ 𝑦.𝑛𝑒𝑥𝑡)

We now argue that the for-loop preserves this invariant:

– ∀𝑥 ∈ 𝑔0 ∶ 𝑥 ≠ 𝑦 ⟹ 𝐿𝑏(𝑦) > 𝐿𝑏(𝑥) is preserved as 𝑦 is traversed in 
reverse order within 𝑔0 and all other items 𝑦′ that have 𝐿𝑏(𝑦) < 𝐿𝑏(𝑦′)
are already split out from 𝑔0.

– 𝐿(𝑔0) < 𝐿(𝑔) is preserved as 𝑔 is newly inserted into top-list after 𝑔0.
– 𝑦.𝑝𝑟𝑒 ⪯ 𝑦 is preserved as we have 𝑦 ∈ 𝑔 ∧ 𝑦.𝑝𝑟𝑒 ∈ 𝑔0 and 𝐿(𝑔0) < 𝐿(𝑔).
– 𝑦 ⪯ 𝑦.𝑛𝑒𝑥𝑡 is preserved as if 𝑦 and 𝑦.𝑛𝑒𝑥𝑡 all in the same group 𝑔, we 
have 𝐿𝑏(𝑦) < 𝐿𝑏(𝑦.𝑛𝑒𝑥𝑡); also, if 𝑦 and 𝑦.𝑛𝑒𝑥𝑡 in different groups, we 
have 𝑦 is the first item moved to 𝑔 or 𝑦 is still located in 𝑔0, which 
their groups indicates the correct order.

At the termination of the for-loop, the group 𝑔 is split into multiple 
groups preserving the Order Snapshot. ∎
Theorem 2.  When assigning labels by using the AssignLabel procedure 
(lines 25–32), the Order Snapshot is preserved. 
Proof.  The AssignLabel procedure (lines 25–32) assigns labels for all 
items 𝑧 ∈ 𝐴. The temporary labels are first generated in advance (line 
27). Then, the for-loop replaces the old label with new temporary labels 
(lines 28–32). The key issue is to argue the correctness of the inner 
while-loop (line 31). The invariant of this inner while-loop is that the 
top item in 𝑆 has a temporary label that satisfies the Order Snapshot:
(∀𝑦 ∈ 𝑆 ∶ (𝑦 ≠ 𝑆.𝑡𝑜𝑝 ⟹ 𝑦 ⪯ 𝑆.𝑡𝑜𝑝) ∧ 𝑦 ⪯ 𝑧)

∧ 𝑥 = 𝑆.𝑡𝑜𝑝 ⟹ (𝑥.𝑝𝑟𝑒) < (𝑥) < (𝑥.𝑛𝑒𝑥𝑡)

The invariant initially holds as (𝑧) is correctly replaced by the tempo-
rary label (𝑧) in line 30 and 𝑧 is 𝑥.𝑛𝑒𝑥𝑡, so that (𝑥) < (𝑧); also, we 
have (𝑥.𝑝𝑟𝑒) < (𝑥) as if it is not satisfied, 𝑥 should not have been added 
into 𝑆, which causes contradiction. We now argue that the while-loop 
(line 31) preserves this invariant:

– ∀𝑦 ∈ 𝑆 ∶ (𝑦 ≠ 𝑆.𝑡𝑜𝑝 ⟹ 𝑦 ⪯ 𝑆.𝑡𝑜𝑝) ∧ 𝑦 ⪯ 𝑧 is preserved as all items 
in 𝑆 are added in order, so the top item always has the largest order; 
also, since all item in 𝐴 are traversed in order, so 𝑧 has the larger 
order than all item in 𝑆.

– 𝑥 = 𝑆.𝑡𝑜𝑝 ⟹ (𝑥) < (𝑥.𝑛𝑒𝑥𝑡) is preserved as (𝑥.𝑛𝑒𝑥𝑡) is already 
replace by the temporary label (𝑥.𝑛𝑒𝑥𝑡) and 𝑥 is precede 𝑥.𝑛𝑒𝑥𝑡 by 
using temporary labels.

– 𝑥 = 𝑆.𝑡𝑜𝑝 ⟹ (𝑥.𝑝𝑟𝑒) < (𝑥) is preserved as if such an invariant is 
not satisfied, 𝑥 should not be added into 𝑆, which causes a contra-
diction.

At the termination of the inner while-loop, we get 𝑆 = ∅, so that all 
items that precede 𝑧 have replaced new labels maintaining the Order 
Snapshot. At the termination of the for-loop (lines 28–32), all items in 
𝐴 have been replaced with new labels. ∎

4.3.3.  Complexities
For the sequential version, it is proven that the amortized time is 

𝑂(1). The parallel version has some refinement. That is, the AssignLabel
procedure traverses the locked items two times for generating temporary 
labels and replacing the labels, which costs amortized time 𝑂(1). Thus, 
if 𝑚 items are inserted in parallel, the total amortized work is 𝑂(𝑚). In 
the best case, 𝑚 items can be inserted in parallel by  workers with 
amortized depth 𝑂(1), so that the amortized running time is 𝑂(𝑚∕).

The worst-case can easily happen when all insertions are accrued in 
the same position of 𝕆. The relabel procedure is triggered with the con-
stant amortized work  = 𝑂(1) for each inserted item. In the worst-case, 
𝑚 items have to be inserted one-by-one, e.g.  workers simultaneously 
insert items at the head of 𝕆 with amortized depth 𝑂(𝑚), and thus the 
amortized running time is 𝑂(𝑚∕ + 𝑚).

Such a worst-case can be improved by batch insertion. The idea is 
that we first allocate enough label space for 𝑚∕ items per worker, then 
 workers can insert items in parallel. However, this simple strategy 
requires pre-processing of 𝕆 and does not change the worst-case time 
complexity.

4.4.  Parallel order

4.4.1.  Algorithm
Algorithm 5 shows the detailed steps of Order. When comparing the 

order of 𝑥 and 𝑦, they must not have been deleted (line 1). We first com-
pare the top-labels of 𝑥 and 𝑦 (lines 2–5). Two variables, 𝑡 and 𝑡′, obtain 
the values of 𝐿𝑡(𝑥) and 𝐿𝑡(𝑦) for comparison (line 2), and the result is 
stored as 𝑟. After that, we have to check whether 𝐿𝑡(𝑥) or 𝐿𝑡(𝑦) has been 
updated or not; if that is the case, we have to redo the whole procedure 
(line 5), which is to go back to line 1 and execute lines 1 to 5 again. 
In other words, when comparing 𝐿𝑡(𝑥) and 𝐿𝑡(𝑦), both values cannot be 
updated by other workers. Second, we compare the bottom-labels of 𝑥
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Algorithm 4: Parallel-insert(𝕆, 𝑥, 𝑦).

1 Lock(𝑥); 𝑧 ← 𝑥.𝑛𝑒𝑥𝑡; Lock(𝑧)
2 if 𝑥.𝑔𝑟𝑜𝑢𝑝 = 𝑧.𝑔𝑟𝑜𝑢𝑝 then 𝑏 ← 𝐿𝑏(𝑧) else 𝑏 ← 𝑁
3 if 𝑏 − 𝐿𝑏(𝑥) < 2 then  Relabel(𝑥, 𝑧) // A full group 

triggers relabel
4 insert 𝑦 into bottom-list between 𝑥 and 𝑥.𝑛𝑒𝑥𝑡 by setting 

𝑦.𝑛𝑒𝑥𝑡 ← 𝑥.𝑛𝑒𝑥𝑡, 𝑦.𝑝𝑟𝑒 ← 𝑥, 𝑥.𝑛𝑒𝑥𝑡 ← 𝑦, and 𝑥.𝑛𝑒𝑥𝑡.𝑝𝑟𝑒 ← 𝑦
5 𝐿𝑏(𝑦) ← 𝐿𝑏(𝑥) + ⌊(𝑏 − 𝐿𝑏(𝑥))∕2⌋
6 𝑦.𝑔𝑟𝑜𝑢𝑝 ← 𝑥.𝑔𝑟𝑜𝑢𝑝
7 Unlock(𝑥); Unlock(𝑧)

8 procedure Relabel(𝑥, 𝑧)
9 𝑔0 ← 𝑥.𝑔𝑟𝑜𝑢𝑝; Lock(𝑔0); Lock(𝑔0.𝑛𝑒𝑥𝑡);
10 Lock all items 𝑦 ∈ 𝑔0 with 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 in order from head 

to tail
// Split a full group

11 for 𝑦 ∈ 𝑔0 in reverse order until less than log𝑁2  items left in 
𝑔0 do

12 if 𝐿(𝑔0.𝑛𝑒𝑥𝑡) − 𝐿(𝑔0) < 2 then Rebalance(𝑔0)
// Rebalance groups

13 insert a new group 𝑔 into the top-list after 𝑔0 by setting 
𝑔.𝑛𝑒𝑥𝑡 ← 𝑔0.𝑛𝑒𝑥𝑡, 𝑔.𝑝𝑟𝑒 ← 𝑔0, 𝑔0.𝑛𝑒𝑥𝑡 ← 𝑔 and 
𝑔0.𝑛𝑒𝑥𝑡.𝑝𝑟𝑒 ← 𝑔;  𝐿(𝑔) ←
𝐿(𝑔0) + ⌊(𝐿(𝑔0.𝑛𝑒𝑥𝑡) − 𝐿(𝑔0))∕2⌋

14 split out log𝑁2  items 𝑦 into 𝑔
15 AssignLabel(𝑔, 𝐿𝑏, 0, 𝑁)
16 AssignLabel(𝑔0, 𝐿𝑏, 0, 𝑁)
17 Unlock all items 𝑦 ∈ 𝑔0 with 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧, 𝑔0.𝑛𝑒𝑥𝑡, and 𝑔0
18 procedure Rebalance(𝑔)
19 𝑔′ ← 𝑔.𝑛𝑒𝑥𝑡; 𝑗 ← 1; 𝑤 ← 𝐿(𝑔′) − 𝐿(𝑔); 𝐴 ← ∅
20 while 𝑤 ≤ 𝑗2 do
21 𝐴 ← 𝐴 ∪ {𝑔′}; 𝑔′ ← 𝑔′.𝑛𝑒𝑥𝑡; Lock(𝑔′)
22 𝑗 ← 𝑗 + 1; 𝑤 ← 𝐿(𝑔′) − 𝐿(𝑔)
23 AssignLabel(𝐴,𝐿𝑡, 𝐿𝑡(𝑔), 𝑤) // Assign labels for 

relabel process
24 Unlock all locked groups in line 21.

25 procedure AssignLabel(𝐴,, 𝑙0, 𝑤)
26 𝑆 ← empty stack; 𝑘 ← 1; 𝑗 ← |𝐴| + 1
27 for 𝑧 ∈ 𝐴 in order do (𝑧) = 𝑙 + 𝑘 ⋅𝑤∕𝑗; 𝑘 ← 𝑘 + 1
28 for 𝑧 ∈ 𝐴 in order do
29 if (𝑧.𝑝𝑟𝑒) < (𝑧) < (𝑧.𝑛𝑒𝑥𝑡) then
30 (𝑧) ← (𝑧)
31 while 𝑆 ≠ ∅ do 𝑥 ← 𝑆.𝑝𝑜𝑝(); (𝑥) ← (𝑥)
32 else 𝑆.𝑝𝑢𝑠ℎ(𝑧)

and 𝑦, if their top-labels are equal (lines 6–9). Similarly, two variables, 
𝑏 and 𝑏′, obtain the value of 𝐿𝑏(𝑥) and 𝐿𝑏(𝑦) for comparison (line 7), 
and the result is stored as 𝑟. After that, we have to check whether four 
labels are updated or not; if any label is the case, we have to redo the 
whole procedure (lines 8 and 9). We can see that our parallel Order
is lock-free, allowing for high parallelism. During the order compari-
son, 𝑥 or 𝑦 cannot be deleted (line 10). We return the result at line
11.

It is true that there is an ABA problem. That is, 𝐿𝑡(𝑥) and 𝐿𝑡(𝑦) are pos-
sibly updated multiple times but remain the same values as 𝑡 and 𝑡′ (line 
5). In other words, 𝐿𝑡(𝑥) and 𝐿𝑡(𝑦) are updated but may not be identified 
when comparing 𝑡 and 𝑡′ (line 4), which can lead to a wrong result. Also, 
line 8 has the same problem. To solve this problem, each top-label or 
bottom-label, 𝐿𝑡 or 𝐿𝑏, includes an 8-bit counter to record the version. 
Each time, the counter increases by one once its corresponding label is 

Algorithm 5: Parallel-order(𝕆, 𝑥, 𝑦).

1 if 𝑥.𝑙𝑖𝑣𝑒 = false ∨ 𝑦.𝑙𝑖𝑣𝑒 = false then return fail 
2 𝑡, 𝑡′, 𝑟 ← 𝐿𝑡(𝑥), 𝐿𝑡(𝑦),∅
3 if 𝑡 ≠ 𝑡′ then
4 𝑟 ← 𝑡 < 𝑡′

5 if 𝑡 ≠ 𝐿𝑡(𝑥) ∨ 𝑡′ ≠ 𝐿𝑡(𝑦) then  goto line 1
6 else
7 𝑏, 𝑏′ ← 𝐿𝑏(𝑥), 𝐿𝑏(𝑦); 𝑟 ← 𝑏 < 𝑏′

8 if 𝑡 ≠ 𝐿𝑡(𝑥) ∨ 𝑡′ ≠ 𝐿𝑡(𝑦) ∨ 𝑏 ≠ 𝐿𝑏(𝑥) ∨ 𝑏′ ≠ 𝐿𝑏(𝑦) then
9 goto line 1

10 if 𝑥.𝑙𝑖𝑣𝑒 = false ∨ 𝑦.𝑙𝑖𝑣𝑒 = false then return fail 
11 return 𝑟

updated. With this implementation, we can safely check whether the 
label is updated or not merely by comparing the values (lines 5 and 8).

Example 4. [Order] In Fig. 2, we show an example to determine the 
order of 𝑣2 and 𝑣3 by comparing their labels. Initially, both 𝑣2 and 𝑣3
have old labels, 2 and 3. After the Relabel procedure is triggered, both 
𝑣2 and 𝑣3 have new labels, 6 and 9, in which the Order Snapshot is 
preserved. However, it is possible that Relabel procedures are triggered 
in parallel. We first get (𝑣3) = 3 (old label) and second get (𝑣2) = 6
(new label), but it is incorrect for (𝑣2) > (𝑣3). After we get (𝑣2) =
6, the value of (𝑣2) has to be already updated to 9 since the Order 
Snapshot is maintained. In this case, we redo the whole process until 
(𝑣2) and (𝑣3) are not updated during comparison. Thus, we can get 
the correct result of (𝑣2) < (𝑣3) even the relabel procedure is executed 
in parallel. 

4.4.2.  Correctness
We have proven that Parallel-Insert preserves the Order Snap-

shot even though relabel procedures are triggered, by which labels cor-
rectly indicate the order. In this case, it is safe to determine the order 
for 𝑥 and 𝑦 in parallel. We first argue the top-labels (lines 2 - 5). The 
problem is that we first get 𝑡 ← 𝐿𝑡(𝑥) and second get 𝑡′ ← 𝐿𝑡(𝑦) succes-
sively (line 2), by which 𝑙 and 𝑙′ may be inconsistent, due to a Relabel
procedure may be triggered. To argue the consistency of labels, there 
are two cases: 1) both 𝑡 and 𝑡′ obtain old labels or new labels, which 
can correctly indicate the order; 2) the 𝑡 first obtains an old label and 𝑡′
second obtains a new label, which may not correctly indicate the order 
as 𝑥 may already updated with a new label, and vice versa; if that is the 
case, we redo the whole process. On the termination of parallel Order, 
the invariant is that 𝑡 and 𝑡′ are consistent and thus correctly indicate 
the order. The bottom-labels are analogous (lines 6–9).

We can see our parallel Order operation is lock-free. First, it does 
not use locks. Second, it is possible that the loops occur (lines 5 and 9), 
when other workers are doing the Relabel operation simultaneously, 
which causes the labels of related items to be updated. However, the
Relabel has a low probability of happening (evaluated in Section 6.2), 
will be completed quickly, and thus the tow loops cannot all spin forever 
without successful. Third, our parallel Order is linearizable regardless 
of the loops that occur (lines 5 and 9). Therefore, our parallel Order
operation completes in a finite number of steps and has lock-freedom.

4.4.3.  Complexities
For the sequential version, the running time is 𝑂(1). For the parallel 

version, we have to consider the frequency of redo. It has a significantly 
low probability that the redo will be triggered. This is because the la-
bels are changed by the Relabel procedure, which is triggered when 
inserting Ω(log𝑁) items. Even if the labels of 𝑥 and 𝑦 are updated when 
comparing their order, it still has a tiny probability that such label up-
dating happens during the comparison of labels (lines 4 and 7).
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Thus, supposing 𝑚 items are comparing their orders in parallel, the 
total work is 𝑂(𝑚), and the depth is 𝑂(1) with a high probability. So that 
the running time is 𝑂(𝑚∕) with high probability.

5.  Implementation

In this section, we discuss the implementation details of our method.

5.1.  Lock implementation

OpenMP (Open Multi-Processing) [17] is an application program-
ming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran, on many plat-
forms, instruction-set architectures, and operating systems. We use 
OpenMP as the threading library to implement the parallel algorithms. 
In this work, the key issue is how to implement the synchronization 
locks. There are two different locks. One solution is to use the OpenMP 
lock, “omp_set_lock” and “omp_unset_lock”. Each worker will sus-
pend the working task until the specified lock is available. The OpenMP 
lock is efficient when substantial computation is performed within the 
locked region with few lock and unlock operations. The reason is that 
suspended workers require a low cost, but the operations of suspending 
and waking up workers have a high cost.

The other solution is the spin lock, which can be implemented by 
the atomic primitive CAS. Given a variable 𝑥 as a lock, the CAS will 
repeatedly check 𝑥, and set 𝑥 from false to true if 𝑥 is false. In other 
words, one worker will busy-wait for the lock 𝑥 until it is released by 
other workers without suspension.

Algorithm 6 shows an implementation of the spin lock. To reduce 
bus traffic, 𝑥.𝑙𝑜𝑐𝑘 is tested before using CAS to set 𝑥.𝑙𝑜𝑐𝑘 from false
to true (line 3). Furthermore, it is more effective for other workers to 
back-off for some duration, giving competing workers the opportunity 
to acquire the lock. Typically, especially in our use cases, the large num-
ber of unsuccessful attempts indicates that the worker should back off 
for a longer period. Here, we use a simple strategy that exponentially 
increases the back-off time for each try (lines 1 and 4–6), where 𝑖 and 𝑗
are local variables without increasing bus traffic [18].

Algorithm 6: Lock(𝑥).
1 𝑖 ← 1
2 while true do
3 if 𝑥.𝑙𝑜𝑐𝑘 = false ∧ CAS(𝑥.𝑙𝑜𝑐𝑘, false, true) then return 
4 𝑗 ← 𝑖
5 while 𝑗 > 0 do 𝑗 ← 𝑗 − 1
6 𝑖 ← 2 × 𝑖

5.2.  Capacity of OM

In our experiment, for easy implementation, the bottom-labels 𝐿𝑏
can be 32-bit integers, and the top-labels 𝐿𝑡 can be 64-bit integers. One 
advantage is that reading and writing such 32-bit or 64-bit integers are 
atomic operations on modern machines. As we use 8-bit for the version 
number to avoid the ABA problem in Section 4.4.1. So, the total capacity 
of N is 232−8 = 224, which is more than 16 million.

Currently, both new modern ARM and X86 architectures already sup-
port 128-bit atomic CAS operation. Other atomic operations, such as Read
and Write, do not support 128-bit atomicity, but we can emulate them 
using the CAS operation. So, we can get a large capacity up to 264−8 = 256.

6.  Experiments

In this section, we implement our parallel approach, the so-called 
“Ours”. We also implement the existing sequential approach in [2] as a 

baseline for comparison, the so-called “Seq”. Note that Seq has almost 
the same performance as Ours when executing with a single worker se-
quentially, and we cannot figure out the difference in the figures. There-
fore, we report both Seq and Ours with a single worker in the same fig-
ure. Unfortunately, we are unable to implement the parallel OM data 
structure in [3], which is combined with series-parallel maintenance 
and has a totally different mechanism from our implementation. Thus, 
we do not experimentally compare this approach with ours.

For the existing parallel or concurrent OM data structure, the work 
in [16] is not published, and we cannot find the implementation; the 
work in [3] is proposed specifically for series-parallel (SP) maintenance, 
not for the commonly used OM data structure, and we cannot implement 
it for evaluation. Therefore, we cannot compare “Ours” with the above 
two methods.

Specifically, we evaluate three order maintenance operations, Order,
Insert, and Delete. We have four test cases, No, Few, Many, and Max, 
for the number of triggered relabeling processes. The source code is 
available on GitHub.1

6.1.  Experiment setup

The experiments are performed on a server with an AMD Ryzen 
Threadripper PRO 3995WX (Zen 2, 64 cores, 128 hyperthreads, 256MB 
of last-level shared cache), which consists of multiple NUMA (Non-
Uniform Memory Access) domains due to its chiplet-based architec-
ture. The hyperthread technique allows the CPU to process two sets 
of instructions (threads) simultaneously on one core by utilizing “dead 
time” when the core would otherwise be waiting for data. We choose 
the number of workers to increase exponentially, as 1, 2, 4, 8, 16, 32, 64, 
and 128, to evaluate the parallelism. For this purpose, we assign each 
worker as a working thread to be pinned to one CPU core using 
“pthread_setaffinity_np” supported by the Linux system, so that 
multiple workers can physically run in parallel. Threads were pinned 
in a NUMA-aware manner, filling all cores within a NUMA node before 
moving to the next node. Memory allocation followed the same NUMA 
locality policy to minimize remote memory access. With different num-
bers of workers, we perform each experiment at least 100 times and 
calculate the mean with 95% confidence intervals. The server has 256 
GB memory and runs the Ubuntu Linux (22.04) operating system. All 
tested algorithms are implemented in C++ and compiled with g++ 
version 11.2.0 with the -O3 option. OpenMP2 version 4.5 is used as the 
threading library.

We evaluate the OM data structure with four experiments:

– Insert: we insert 10 million items into 𝕆.
– Order: we compare the order of two randomly chosen items. There 
are 10 million Order operations in total.

– Delete: we delete all inserted items, a total of 10 million times.
– Mixed: again, we insert 10 million items, mixed with 100 million

Order operations. For each inserted item, we compare its order with 
the other 10 items that are randomly chosen; therefore, there are 
a total of 100 million order comparisons. The purpose is to investi-
gate the frequency of “redo” occurring in the Order operations when 
there are parallel Insert operations. This experiment is to simulate 
the OM operations in graph algorithms, e.g., 𝑘-core maintenance. 
Real data graphs, such as social networks, are typically sparse, with 
a number of edges that is approximately 10 times the number of ver-
tices; traversing edges requires Order operations and dealing with 
vertices needs Insert or Delete operations.

For each experiment, we have four test cases by choosing different 
numbers of positions for inserting:

1 https://github.com/Itisben/Parallel-OM.git
2 https://www.openmp.org/
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Table 2 
The detailed numbers of the relabel procedure.

 Insert  Mixed
 Case  Relabel# 𝐿𝑏# 𝐿𝑡#  AvgLabel#  OrderRedo#
 No  0  10,000,000  0  1  0
 Few  2483  10,069,551  4967  1  0
 Many  356,624  19,985,472  5,754,501  2.6  0
 Max  357,142  19,999,976  99,024,410  11.8  0

– No Relabel case: we have 10 million positions, the total number of ini-
tial items in 𝕆, so that each position averagely has 1 inserted items. 
Thus, it almost has no Relabel procedures triggered when inserting.

– Few Relabel case: we randomly choose 1 million positions from 10 
million items in 𝕆, so that each position averagely has 10 inserted 
items. Thus, it is possible that a few Relabel procedures are triggered 
when inserting.

– Many Relabel case: we randomly choose 1000 positions from 10 mil-
lion items in 𝕆, so that each position averagely has 10,000 inserted 
items. Thus, it is possible that many Relabel procedures are trig-
gered when inserting.

– Max Relabel case: we only choose a single position (at the middle 
of 𝕆) to insert 10, 000, 000 items. In this way, we obtain a maximum
number of triggered relabel procedures.

All items are inserted on-the-fly without preprocessing. In other 
words, 10 million items are randomly assigned to multiple workers, e.g 
32 workers, even if in the Max case all insertions are reduced to sequen-
tial execution.

6.2.  Evaluating relabelling

In this test, we evaluate the Relabel procedure triggered by Insert
operations over four test cases, No, Few, Many, and Max. Since the differ-
ent numbers of workers of Ours exhibit the same trend, we have chosen 
32 workers for this evaluation. Of course, both Ours and Seq have the 
same results, so we report them together.

In Table 2, columns 2–4 show the details in the Insert experiment, 
where Relabel# is the times of triggered Relabel procedures, 𝐿𝑏# is 
the number of updated bottom-labels for items, 𝐿𝑡# is the number of 
updated top-labels for items, and AvgLabel# is the average number of 
updated labels for each inserted items when inserting 10 million items. 
We can see that, for four cases, the amortized numbers of updated labels 
increase slowly, where the average numbers of inserted items for each 
position increase by 1, 10, 10, 000, and 10 million. This is because our 
parallel Insert operations have 𝑂(1) amortized work. Specifically, we 
make several observations:

– The No case does not trigger Relabel, updating only one 𝐿𝑏 per 
insert.

– The Few case triggers 2.5 thousand Relabel, updating 1.007 𝐿𝑏, 0.005
𝐿𝑡, and totally about one label per inserted item.

– The Many case triggers 0.36 million Relabel, updating 2 𝐿𝑏, 0.6 𝐿𝑡, 
and totally about 2.6 labels per inserted item.

– The Max case triggers 0.36 million Relabel, which is the same as 
Many the case. But it updates 2 𝐿𝑏, 9.9 𝐿𝑡, totally about 11 labels per 
inserted item.

– The Max case is the worst-case of Insert operations, but it has ac-
ceptable about 11 updated labels for each inserted item. This is be-
cause the Insert operations have amortized 𝕆(1) time complexity. 
Although relabel processes introduce short bursts of work, they are 
unlikely to happen.

In Table 2, the last column shows the times of redo (the “goto” in 
lines 5 and 9 of Algorithm 5) for Order operations in the Mixed ex-
periment, which are all zero. Since Mixed has mixed Order and Insert
operations, we may redo the Order operation if the corresponding labels 

are being updated. However, Relabel happens with a low probability; 
also, it is a low probability that related labels are changed when com-
paring the order of two items. This is why the times of redo are zero, 
leading to high parallel performance.

6.3.  Evaluating the running time

In this test, for Ours, we exponentially increase the number of work-
ers from 1 to 128 and evaluate the real running time. For Seq, we use 
a single worker. We perform Insert, Order, Delete, and Mixed over four 
test cases, No, Few, Many, and Max.

The plots in Fig. 3 depict the performance. The x-axis is the number 
of workers, and the y-axis is the execution time (milliseconds). Note that 
we compare the performance by using two kinds of lock: the OpenMP 
lock (denoted as dashed lines) and the spin lock (denoted as solid lines), 
since both locks are widely used in concurrent programming. A first look 
reveals that running times normally decrease with increasing numbers of 
workers, except for the Max case over the Insert and Mixed experiments. 
Specifically, we make several observations:

– The Seq has the same performance as Ours when using spin locks 
and a single worker. Therefore, we depict the Seq together with Ours
with a single worker in plots. The reason is that even Ours has ex-
tra cost on atomic CAS operations, there does not exist contention 
with a single worker, and thus these atomic operations can perform 
efficiently with significant optimization by the compiler.

– For the experiment of Order, it is implemented as lock-free without 
using OpenMP lock or spin lock. The No and Few cases are much 
slower than the Many and Max cases. The reason is that when each 
item is distributed averagely across the large size of the list for the No
and Few cases, the comparisons are effectively random across a huge 
memory space, reducing cache hit rates. In contrast, the Many and 
Max cases repeatedly access a smaller subset of memory, improving 
cache locality and thereby the performance.

– Three experiments, Insert, Delete, and Mixed, which use the spin lock, 
are much faster than using the OpenMP lock. This is because the lock 
regions always have few operations, and busy waiting (spin lock) 
is much faster than suspension waiting (OpenMP lock). Unlike the 
above three experiments, the Order experiment does not show any 
differences since Order operations are lock-free without using locks 
for synchronization.

– For the Max case of Insert and Mixed, unexpectedly, the running 
times increase with increasing number of workers. The reason is that 
the Insert operations are reduced to sequential in Max case since 
all items are inserted in the same position. Thus, it has the highest 
contention on shared positions where multiple workers are accessing 
at the same time, especially for 64 workers.

– For the Many case of Insert and Mixed, the running times decrease 
until using 4 workers. From 8 workers, however, the running times 
begin to increase. This is because the Insert operations have only 
1000 positions in the Many case, and thus it may have a high con-
tention on shared positions when using more than 4 workers.

– Over the Order and Delete experiments, we can see that the Many and 
Max cases are always faster than the Few and cases. This is because 
the Few and No cases have 1, 000 and 1 operating positions, respec-
tively; all of these positions can fit into the CPU cache with high 
probability, and accessing the cache is much faster than accessing 
the memory.

– Over the Order experiments, the Many and Max cases do not have 
expected scalability between 64-worker and 128-worker. The rea-
son is that the CPU has only 64 hardware cores but supports 128 
threads via hyperthreading, and a high number of workers leads 
to high contention, which affects parallel performance with 128
workers.
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Fig. 3. Evaluating the running times.

Fig. 4. Evaluate the speedups by increasing the number of workers (Strong Scaling).

6.4.  Evaluating the speedups

In this experiment, we measure the Strong Scaling by increasing the 
number of workers and fixing the total work. The plots in Fig. 4 show 
the speedups of Ours. The x-axis is the number of workers, and the y-axis 
is the speedups, which are the ratio of running times (using spin locks) 
between the sequential version and using multiple workers. The dotted 
lines show the perfect speedups as a baseline. The numbers beside the 
lines indicate the maximal speedups. A first look reveals that all experi-

ments achieve speedups when using multiple cores, except for the Max
case over insert and Mixed experiments. Specifically, we make several 
observations:

– For all experiments, we observe that the speedups are around 1∕4 to 1
when using 1 worker in all cases. This is because, for all operations of 
OM, the sequential version has the same work as the parallel version. 
Especially, for Delete, such speedups are low as 1∕2 - 1∕4, as locking 
items for deleting costs much running time.
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Fig. 5. Evaluate the scalability with 32 workers and increasing the item size (Weak Scaling).

Fig. 6. Evaluating the stability of running times over 32 cores.

– For Insert and Mixed, we achieve around 7x speedups using 32 work-
ers in No and Few cases, and around 2x speedups using 4 workers in 
Many cases. This is because all CPU cores have to access the shared 
memory through the bus, which connects memory and cores, and the 
atomic CAS operations will lock the bus. Each Insert operation may 
have many atomic CAS operations for spin lock and many atomic 

read and write operations for updating labels and lists. In this case, 
the bus traffic is high, which is the performance bottleneck for Insert
operations.

– For Order, all four cases achieve almost perfect speedups 
from using 1 to 32 workers, as Order operations are
lock-free.

Journal of Parallel and Distributed Computing 211 (2026) 105238 

11 



B. Guo and E. Sekerinski

– For Delete, it achieves around 4x speedups using 64 workers in four 
cases. This is because, for parallel Delete operations, the worst-case, 
where all operations are blocking as a chain, is almost impossible to 
happen.

6.5.  Evaluating the scalability

In this experiment, we measure the Weak Scaling by increasing the 
total work and fixing with 32 workers . In this test of Ours, we increase 
the scale of the initial order list from 10 million to 100 million and 
evaluate running times with fixed 32 workers. We test three cases, No, 
Few, Many, and Max, by fixing the average number of items per insert 
position. For example, given an initial order list with 20 million items, 
the No case has 20 million insert positions, the Few case has 2 million 
positions, and the Many case has 2000 insert positions, and the Max case 
only has single one insert position.

The plots in Fig. 5 depict the performance. The x-axis is the ini-
tial size of the order list, and the y-axis is the time ratio of the current 
running time to the “10 million” running time. The dotted lines show 
the perfect time ratio as a baseline. The beginning time ratio is one.
Obviously, we observe that for the parallel Insert, the time ratio of 
Max case increases sharply, since it is reduced to sequential and has no 
speedup with 32 workers, so does the Mixed case. Besides, all the other 
time ratios are roughly close to linearly increasing with the scales of the 
order list. This is because all parallel Insert, Delete, and Order have 
best-case time complexity 𝑂( 𝑚 ) and on average their running times are 
close to the best case.

Specifically, for Order, we can see that the time ratio is up to 20x 
with a scale of 100 million in the No case. The poor scalability of the No
case workload for Order operations is due to the reduced cache local-
ity, that is, each comparison touches random pairs of nodes distributed 
across the entire 10M array, which cannot fit into the L3 CPU cache 
anymore and may lead to cache misses. In contrast, the Few, Many, and 
Max cases concentrate accesses within fewer groups, which are more 
cache-friendly and thus more efficient than the No case.

6.6.  Evaluating the stability

In this test of Ours, we compare 100 testing times for the Insert, Order, 
and Delete operations by using 32 workers. Each time, we randomly 
choose positions and randomly insert items for the NO, Few, and Many
cases, so that the test is different. However, it is always the same for the 
Max case, since there is only one position to insert all items.

The plots in Fig. 6 depict the running time by performing the exper-
iments 100 times. The x-axis is the index of repeating times, and the 
y-axis is the running times (milliseconds). We observe that the perfor-
mance of Insert, Order, Delete, and Mixed remains well bounded across 
all four cases. Specifically, we have two observations:

– We can see that the Max case has a wider variation than other cases 
over Insert and Mixed. This is because the parallel Insert opera-
tions always have contention over shared data in memory. Such con-
tention causes the running times to fluctuate within a bounded range.

– It is true that the relabel processes of Insert operations introduce 
short bursts of work. However, relabel processes are unlikely to hap-
pen since the groups are at least of size log𝑁 and the Insert opera-
tions have amortized 𝕆(1) time, the relabel cost is tightly bounded.

7.  Conclusion and future work

We present a new parallel order maintenance (OM) data structure. 
The parallel Insert and Delete are synchronized with locks efficiently. 
Notably, the parallel Order is lock-free, and can execute highly in paral-

lel. Experiments demonstrate significant speedups (for 64 workers) over 
the sequential version on a variety of test cases.

In future work, we will attempt to reduce the synchronization over-
head, particularly for parallel Insert. Specifically, we will investigate 
the lock-free version of Insert, Delete, and Order operations by using 
the atomic Mult-Word Compare-and-Swap (MCAS) [19], which can sig-
nificantly simplify the lock-free implementation. Furthermore, we will 
investigate insertions and deletions in batches by pre-processing the in-
serted and deleted items, which can significantly reduce the contention 
for multiple workers. In addition, we intend to apply our parallel OM 
data structure to a broad range of parallel algorithms.
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