Journal of Parallel and Distributed Computing 211 (2026) 105238

Contents lists available at ScienceDirect

PARALIELAND
DISTRIBUTED
COMPUTING

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

New concurrent order maintenance data structure

Bin Guo © #*, Emil Sekerinski (2P

2 Department of Computer Science, Trent University, 1600 West Bank Drive, Peterborough, K9L 0G2, ON, Canada
b Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, L8S 4L8, ON, Canada

ARTICLE INFO ABSTRACT

Keywords: The Order-Maintenance (OM) data structure maintains a total order list of items for insertions, deletions, and com-

Order maintenance parisons. As a basic data structure, OM has many applications, such as maintaining the topological order, k-core,

l;jril‘lel and k-truss in graphs, and maintaining ordered sets in the Unified Modelling Language (UML) specification. The
ulticore

prevalence of multicore machines suggests parallelizing such a basic data structure. This paper proposes a new
parallel OM data structure that supports insertions, deletions, and comparisons in parallel. Specifically, parallel
insertions and deletions are efficiently synchronized using locks, which achieves up to 7x and 5.6x speedups
with 64 workers. One significant advantage is that comparisons are lock-free, enabling them to execute highly
in parallel with other insertions and deletions, which achieves up to 34.4x speedups with 64 workers. Typical
real applications maintain order lists that always have a much larger portion of comparisons than insertions and
deletions. For example, in core maintenance, the number of comparisons is up to 297 times larger compared with
insertions and deletions in certain graphs. This shows that the lock-free order comparison provides a significant
practical contribution.

Shared memory
Compare-and-swap
Lock-free

Amortized constant time
Core maintenance

1. Introduction representation) has a set of windows, but furthermore, the set is ordered,
so are the ordered bag and sequence. In summary, the OM data struc-
ture is a building block for a batch of algorithms and is widely applied

in extensive applications.

The well-known Order-Maintenance (OM) data structure [1-3] main-
tains a total order of unique items in an order list, denoted as O, by
following three operations:

Sequential. In the sequential case, the OM data structure has been well
studied. The naive idea is to use a balanced binary search tree [11].
All three operations can be performed in O(log N) time, where there
supposing that x is in O and y is not in O. are at most N items in the ordered list O. In [1,2], the authors propose
Delete(0, x): delete x from the ordered list O, supposing that x is in an OM data structure that supports all three operations in O(1) time.
o. The idea is that all items in O are linked as a double-linked list. Each
item is assigned a label to indicate its order. We can perform the Order

e Order(Q, x, y): determine if x precedes y in the ordered list O, de-
noted as x < y, supposing both x and y are in O.
e Insert(O,x,y): insert a new item y after x in the ordered list O,

Applications. The OM data structure is widely used for cohesive sub-
graph algorithms, including k-core maintenance [4-6] and k-truss main-
tenance [71, in dynamic graphs, where the graph has frequently inserted
and removed edges. After computing the k-core and k-truss, they are
maintained when updating edges instead of being recomputed ineffi-
ciently. The fundamental issue is that all vertices are maintained in a
total order, the so-called k-order, which can be used to avoid repeated
traversing of edges and thus improve performance. Similarly, the OM
data structure can be used to maintain the topological order of ver-
tices in directed acyclic graphs after dynamically inserting or removing
edges [8,9]. Additionally, ordered sets are widely used in Unified Mod-
eling Language (UML) Specifications [10], e.g., a display screen (an OS’s

* Corresponding author.

E-mail addresses: binguo@trentu.ca (B. Guo), emil@mcmaster.ca (E. Sekerinski).

https://doi.org/10.1016/j.jpdc.2026.105238

operation by comparing the labels of two items in O(1) time. Also, the
Delete operation costs O(1) time without changing other labels. For the
Insert(x, y) operation, y can be directly inserted after x with O(1) time,
if there exists label space between x and its successors; otherwise, a rela-
bel procedure is triggered to rebalance the labels, which costs amortized
O(log N) time per insertion. After introducing a list of sublists structure,
the amortized running time of the relabel procedure can be optimized to
O(1) per insertion. Thus, the Insert operation has O(1) amortized time.

Parallel. Due to the prevalence of the multicore shared-memory archi-
tecture, it immediately suggests parallelizing the OM data structure. In
this paper, we present a new concurrent OM data structure. In terms of

Received 11 October 2024; Received in revised form 30 January 2026; Accepted 8 February 2026

Available online 19 February 2026

0743-7315/© 2026 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jpdc
https://www.elsevier.com/locate/jpdc
https://orcid.org/0000-0002-7350-7609

k

k

7

5.6

64

34.4

64

$\od $

$\texttt {Order}(\od , x, y)$

x

y

$\od $

$x \preceq y$

x

y

$\od $

$\texttt {Insert}(\od , x, y)$

y

x

$\od $

x

$\od $

y

$\od $

$\texttt {Delete}(\od , x)$

x

$\od $

x

$\od $

k

k

k

k

k

$O(\log N)$

N

$\od $

$O(1)$

$\od $

$O(1)$

$O(1)$

(x, y)

y

x

$O(1)$

x

$O(\log N)$

$O(1)$

$O(1)$

$\od $

$\od $

$\mathcal W$

$\mathcal D$

$O(\mathcal W/ {\mathcal {P}} + \mathcal D)$

$\mathcal {P}$

m

$\mathcal {P}$

$^\dagger $

m

$O(m)$

$O(1)$

$O(m)$

$O(m)$

m

$\od $

$O(m)$

$O(m)$

$O(m)$

$O(1)$

$O(\log n)$

$O(1)$

$\alpha $

$O(\log n)$

$O(1)$

$O(1)$

$O(1)$

$O(1)$

n

$O(n)$

k

e

$O(1)$

$O(\log N)$

N

$\od $

$O(1)$

$O(1)$

$O(1)$

$O(1)$

$\Omega (\log N)$

$x.\pre $

$x.\Next $

x

x

$L^t(x)$

x

$L^t(x) = L(x.\group)$

$L_b(x)$

x

L^t

$[0, N^2]$

L_b

$[0, N]$

N'

$\od $

$N' \leq N$

N'

L^t

N

$g_1, g_2, g_3,\ldots ,g_{1000}$

$N, 2N, 3N, \ldots , 1000N$

L_b

$(\lfloor N/2\rfloor -1)$

x_1

g_1

$(\lfloor N/2\rfloor -1)$

x

y

$\forall x, y \in \od : x \preceq y \equiv L^t(x) < L^t(y)~\lor ~(L^t(x) = L^t(y) \land L_b(x) < L_b(y))$

x

y

x

y

$\texttt {Insert}(\od , x, y)$

y

x

x

y

$L_b(y) = L_b(x)+\lfloor (L_b(x.next) - L_b(x))/2\rfloor $

y

x

$y.group = x.group$

$L^t(y) = L^t(x)$

$L_b(x.\Next) -L_b(x) < 2$

x

y

$O(1)$

$\frac {\log N}{2}$

L_b

L^t

g

g'

$L(g')-L(g)> j^2$

j

g

g'

$\frac {L(g')-L(g)}{j}$

$\Omega (\log N)$

$\Omega (N/\log N)$

$\Omega (N)$

$\Omega (1)$

$\Omega (\log N)$

$O(1)$

$N=16$

h^t

t^t

$\od = \{v_1, v_2, v_3, v_4\}$

$\od = \{v_1, v_2, v_3, v_4, v_5, v_6\}$

u

v_1

$\od =\{v_1, u, v_2, v_3, v_4, v_5, v_6\}$

g

$N=2^4=16$

L^t

h^t

t^t

0

$16^{2} -1$

g_1

g_4

16

h_b

t_b

v_1

v_4

g_1

g_4

7

v_1

v_2

v_1

v_2

g_1

g_1

v_1

u

v_1

g_1

v_1

g_1

g_1

g

g_1

v_1

L_b

$15/2=7$

g

v_2

v_3

L_b

$15/3=5$

$2(15/3) = 10$

g_1

g_2

g

g_1

g_4

g_4

$L(g_4) -L(g_1) = 15 > j^2$

$j =3$

g_2

g_3

20

25

5

g

g_1

$L(g) = L(g_2)+ (L(g_2)-L(g_1))/2 = 17$

u

v_1

g_1

$L_b(u) = L_b(v_1)+ (15-L_b(v_1))/2 = 11$

x

a

b

x

a

b

$\langle \ldots \rangle $

$\od $

2^{32}

L_b

L^t

$\texttt {Items}$

N

$\texttt {Groups}$

N

x

g

$\texttt {ReclaimedItems}$

$\texttt {ReclaimedGroups}$

$\texttt {Items}$

$\texttt {Groups}$

x

g

$\texttt {Items}$

$\texttt {Groups}$

$\texttt {ReclaimedItems}$

$\texttt {ReclaimedGroups}$

x

g

$\texttt {ReclaimedItems}$

$\texttt {ReclaimedGroups}$

x

g

$\texttt {ReclaimedItems}$

$\texttt {ReclaimedGroups}$

N

x

$\od $

$x.\live $

x

$\od $

$x.\live $

$x.\live $

x

x

x

x

$\od $

$y = x.\pre $

x

$x.\Next $

y

y

$x.\pre $

$x.\pre $

x

x

$\pre $

$\Next $

L_b

$\group $

$g = x.\group $

g

x

$g.\live $

g

x

$x.\pre $

x

$x.\Next $

g

$g.\pre $

g

$g.\Next $

x

$\od $

g

x

g

m

$O(m)$

m

$\mathcal {P}$

$O(1)$

$O(m/{\mathcal {P}})$

m

$\mathcal {P}$

$O(m)$

$O(m/{\mathcal {P}} + m)$

x_1, x_2

x_3

p_1, p_2

p_3

p_3

x_2

x_3

p_2

x_1

x_2

x_3

p_3

p_1

x_1

p_2

x_2

p_3

p_1

p_2

p_2

p_3

1000

$x_1, x_2,\ldots ,x_{1000}$

p_1, p_2

p_3

x_1, x_{100}

x_{200}

64

y

x

x

$z = x.\Next $

y

x

z

$L_b(z)$

N

L_b

$(\log N)$

x

$x.\Next $

$x.\group $

y

y

x

$x.\Next $

x

(x)

x

x

g_0

g_0

$g.\Next $

$y\in g_0$

x

$z=x.\Next $

x

z

g_0

$y \in g_0$

g_0

$g_0.\Next $

$\frac {\log N}{2}$

y

g_0

g

L_b

g

$\frac {\log N}{2}$

g_0

L_b

g_0

(g)

g

$g.\Next $

g'

$w > j^2$

g'

g

$g.\Next $

j

w

$L(g') - L(g)$

j

$w>j^2$

A

A

$(A, \mathcal L, l_0, w)$

A

$\mathcal L$

l_0

w

$\mathcal L$

$L_b(x.\Next) = N$

x

$x.\group $

$z \in A$

$\overline {\mathcal L}(z)$

$\mathcal L(z)$

S

$z\in A$

$\overline {\mathcal L}(z)$

$\mathcal L(z.pre)$

$\mathcal L(z.\Next)$

${\mathcal L}(z)$

$\overline {\mathcal L}(z)$

z

S

z

S

$x\in S$

v_1

v_2

u

v_1

g_1

v_3

g_1

g_1

g_1

g_2

g

g_1

g_3

g_4

$\overline {L^t}$

g_2

g_3

$\overline {20}$

$\overline {25}$

g_2

g_3

$L(g_1)< \overline {L}(g_2) < L(g_3)$

$15 < \overline {20} < 17$

g_2

$S=\{g_2\}$

g_3

$L(g_2)< \overline {L}(g_3) < L(g_4)$

$16 < \overline {25} < 30$

$L(g_3)$

25

S

g_2

$L(g_2)$

20

g_3

g_4

g

g_1

$L(g_1) = 17$

v_3

g

$L_b(v_3) = 15 \land L^t(v_3) = 17$

v_2

g

v_2

v_3

L_b

$\overline {L_b}$

v_2

v_3

$\overline {5}$

$\overline {10}$

v_2

v_3

v_2

$\overline {L_b}(v_2) < L_b(v_3)$

$L_b(v_2)$

5

v_3

$L_b(v_2)< \overline {L_b}(v_3)$

$L_b(v_3)$

10

S

v_1

g_1

$L_b(v_1)$

7

u

v_1

g_1

$L_b(u) = 11 \land L^t(u) = 15$

v_1

v_2

v_3

v_4

1

2

3

14

$3, 6, 9$

12

v_1

v_4

v_1

v_2

S

v_3

9

v_2

S

v_2

S

v_2

6

v_1

S

v_1

S

v_1

3

v_4

12

v_3

v_2

v_1

x

$x.\Next $

g_0

$g_0.\Next $

g_0

x

z

g'

$\frac {\log N}{2}$

y

g_0

g

$y\in g_0$

y

L_b

g_0

g

$L(g) > L(g_0)$

y

\begin {equation*}\begin {split} &(\forall x \in g_0: x \neq y \implies L_b(y) > L_b(x)) \\ &~\land ~(L(g_0) < L(g))~\land ~(y.\pre \preceq y \preceq y.\Next) \end {split}\end {equation*}

$\forall x \in g_0: x \neq y \implies L_b(y) > L_b(x)$

y

g_0

y'

$L_b(y) < L_b(y')$

g_0

$L(g_0) < L(g)$

g

g_0

$y.\pre \preceq y$

$y\in g \land y.\pre \in g_0$

$L(g_0) < L(g)$

$y \preceq y.\Next $

y

$y.\Next $

g

$L_b(y) < L_b(y.\Next)$

y

$y.\Next $

y

g

y

g_0

g

$z \in A$

S

\begin {equation*}\begin {split} & (\forall y \in S: (y \neq S.\TOP \implies y \preceq S.\TOP) ~\land ~ y \preceq z) \\ &~\land ~x = S.\TOP \implies \mathcal L(x.\pre) < \overline {\mathcal L}(x) < \mathcal L(x.\Next) \end {split}\end {equation*}

$\mathcal L(z)$

$\overline {\mathcal L}(z)$

z

$x.\Next $

$\overline {\mathcal L}(x) < \mathcal L(z)$

$\mathcal (x.\pre)< \overline {\mathcal L}(x)$

x

S

$\forall y \in S: (y \neq S.\TOP \implies y \preceq S.\TOP) ~\land ~ y \preceq z$

S

A

z

S

$x = S.\TOP \implies \overline {\mathcal L}(x) < \mathcal L(x.\Next)$

$\mathcal L(x.\Next)$

$\overline {\mathcal L}(x.\Next)$

x

$x.\Next $

$x = S.\TOP \implies \mathcal L(x.\pre) < \overline {\mathcal L}(x)$

x

S

$S=\emptyset $

z

A

$O(1)$

$O(1)$

m

$O(m)$

m

$\mathcal {P}$

$O(1)$

$O(m/{\mathcal {P}})$

$\od $

$\mathcal W = O(1)$

m

$\mathcal {P}$

$\od $

$O(m)$

$O(m/{\mathcal {P}} + m)$

$m/{\mathcal {P}}$

$\mathcal {P}$

$\od $

x

y

x

y

t

t'

$L^t(x)$

$L^t(y)$

r

$L^t(x)$

$L^t(y)$

$L^t(x)$

$L^t(y)$

x

y

b

b'

$L_b(x)$

$L_b(y)$

r

x

y

$L^t(x)$

$L^t(y)$

t

t'

$L^t(x)$

$L^t(y)$

t

t'

L^t

L_b

8

v_2

v_3

v_2

v_3

2

3

v_2

v_3

6

9

$\mathcal L(v_3) = 3$

$\mathcal L(v_2) = 6$

$\mathcal L(v_2) > \mathcal L(v_3)$

$\mathcal L(v_2) = 6$

$\mathcal L(v_2)$

9

$\mathcal L(v_2)$

$\mathcal L(v_3)$

$\mathcal L(v_2) < \mathcal L(v_3)$

x

y

$t \gets L^t(x)$

$t' \gets L^t(y)$

l

l'

t

t'

t

t'

x

t

t'

$O(1)$

$\Omega (\log N)$

x

y

m

$O(m)$

$O(1)$

$O(m/{\mathcal {P}})$

x

x

x

x

x

$x.\lock $

$x.\lock $

i

j

L_b

32

L^t

64

32

64

8

$2^{32-8} = 2^{24}$

16

128

$2^{64-8}=2^{56}$

$1, 2, 4, 8, 16, 32, 64$

128

$\od $

k

$\od $

1

$\od $

$\od $

$\od $

$10,000,000$

L_b

L^t

1

10

$10,000$

10

$O(1)$

L_b

2.5

1.007

L_b

0.005

L^t

0.36

2

L_b

0.6

L^t

2.6

0.36

2

L_b

9.9

L^t

11

11

$\od (1)$

64

4

8

4

$1,000$

1

$1/4$

1

1

$1/2$

$1/4$

7

32

2

4

1

32

4

64

32

32

$O(\frac {m}{{\mathcal {P}}})$

$\log N$

$\od (1)$

https://orcid.org/0000-0001-9788-5842
mailto:binguo@trentu.ca
mailto:emil@mcmaster.ca
https://doi.org/10.1016/j.jpdc.2026.105238
https://doi.org/10.1016/j.jpdc.2026.105238
http://creativecommons.org/licenses/by/4.0/

B. Guo and E. Sekerinski

Table 1

The worst-case and best-case work, depth complexities
of parallel OM operations, where m is the number of
operations executed in parallel, 7 is the total number
of workers, and is the amortized complexity.

Parallel Worst-case (0) Best-case (O)
operation w D time w D time
Insert m m' % +m' m' 17 %"'
Delete m m % +m m 1 %
Order m 1 % m 1 %

parallel Insert and Delete operations, we use locks for synchroniza-
tion without allowing interleaving. In the average case, there is a high
probability that multiple Insert or Delete operations occur in different
positions of O so that these operations can execute completely in par-
allel. For the Order operation, we adopt a lock-free mechanism, which
allows to run completely in parallel for any pair of items in O. To im-
plement the lock-free Order, we devise a new algorithm for the Insert
operation that always maintains Order Snapshot for all items, even if
many relabel procedures are triggered. Here, the Order Snapshot means
that the labels of items indicate their order correctly. As Insert opera-
tions always maintain the Order Snapshot, we do not need to lock a pair
of items when comparing their labels in parallel. In other words, lock-
free Order operations are based on Insert operations that preserve the
Order Snapshot.

We analyze our parallel OM operations in the work-depth model [11,
12], where the work, denoted as W, is the total number of operations
that are used by the algorithm, and the depth, denoted as D, is the
longest length of sequential operations [13]. The expected running time
is OOW/P + D) by using P workers with load balancing among those.
In particular, the work and depth terms are equivalent for sequential
algorithms.

Table 1 compares the worst-case and best-case work and depth com-
plexities for the three OM operations when running the m operations
of the same kind in parallel. In the best case, all three operations have
O(m) work and O(1) depth. However, Insert has worst-case O(m) work
and O(m) depth; such a worst-case is easy to construct by inserting m
items into the same position of O, and thus all insertions are reduced
to running sequentially. The Delete operation also has the worst-case
O(m) work and O(m) depth; but this worst case only happens when all
deletions cause a blocking chain, which has a very low probability. Es-
pecially, since the Order is lock-free, it always has O(m) work and O(1)
depth in the worst and best cases. This is why Order operation can al-
ways run in parallel and has a great speedup for multicore machines. The
lock-free Order operation is an important contribution of this work.

We conduct extensive experiments on a 64-core machine over a vari-
ety of test cases to evaluate the parallelism of the new parallel OM data
structure. With 64 workers, our parallel Insert and Delete achieve
up to 7x and 5.6x speedups; our parallel Order achieves up to 34.4x
speedups.

The rest of this paper is organized as follows. The related work is in
Section 2. The preliminaries are given in Section 3. Our parallel OM data
structure is discussed in Section 4. We conduct experimental studies in
Section 5 and conclude this work in Section 6.

2. Related work

In [14], Dietz proposes the first order data structure, with Insert
and Delete having O(log n) amortized time and Order having O(1) time.
In [15], Tsakalidis uses BB[a] trees to improve the update bound to
O(log n) and then to O(1) amortized time. In [1], Dietz et al. propose the
fastest order data structure, which has Insert in O(1) amortized time,
Delete in O(1) time, and Order in O(1) time. In [2], Bender et al. propose
significantly simplified algorithms that match the bounds in [1].

Journal of Parallel and Distributed Computing 211 (2026) 105238

A special case of OM is the file maintenance problem [1,2], which
is to store n items in an array of size O(n). File maintenance has four
operations, i.e., insert, delete, scan-right (scan next k items starting from
e), and scan-left (analogous to scan-right).

For the parallel or concurrent OM data structure, there exists lit-
tle work [3,16] to the best of our knowledge. In [16], the order list is
split into multiple parts and organized as a B-tree, which sacrifices the
O(1) time for three operations; also, the relevant nodes in the B-tree
are locked for synchronization. In [3], a parallel OM data structure is
proposed specifically for series-parallel (SP) maintenance, which identi-
fies whether two accesses are logically independent. Several parallelism
strategies are present for the OM data structure combined with SP main-
tenance. We apply the strategy of splitting a full group into our new
parallel OM data structure.

3. Preliminaries

In this section, for the OM data structure, we revisit the detailed
steps of the sequential version [1-3]. This is the background to discuss
the parallel version in the next section.

The idea is that items in the total order are assigned labels to indicate
the order. Typically, each label can be stored as an O(log N) bits integer,
where N is the maximal number of items in O. Assume it takes O(1)
time to compare two integers. The Order operation requires O(1) time
by comparing labels; also, the Delete operation requires O(1) time since
after deleting one item all other labels of items are not affected.

In terms of the Insert operation, efficient implementations provide
O(1) amortized time. First, a two-level data structure [3] is used. That
is, each item is stored in the bottom-list, which contains a group of con-
secutive elements; each group is stored in top-list, which can contain
Q(log N) items. Both the top-list and the bottom-list are organized as
double-linked lists, and we use x.pre and x.next to denote the predeces-
sor and successor of x, respectively. Second, each item x has a top-label
L'(x), which equals to x’s group label denoted as L'(x) = L(x.group), and
bottom-label L,(x), which is x’s label. Integer L' is in the range [0, N?]
and integer L, in the range [0, N].

Initially, there can be N’ items in O (N’ < N), which are contained
in N’ groups, separately. Each group is assigned a top-label L' with an
N gap between neighbours, e.g., groups g;, g, &3, --- » &1900 can have top-
labels N,2N,3N, ..., 1000N. Each item is assigned a bottom-label L, as
(LN/2] - 1), e.g., a single item x, in the group g, has a bottom-label
(LN/2] = D.

Definition 1. [Order Snapshot] The OM data structure maintains the
Order Snapshot for x precedes y in the total order, denoted as Vx, y €
O:x=2y=L'(x) <Ly VvV (L'(x) = L'(y) A Ly(x) < Ly())

The OM data structure maintains the Order Snapshot defined in Def-
inition 1. In other words, to determine the order of x and y, we first
compare their top-labels (group labels) of x and y; if they are the same,
we continually compare their bottom labels.

3.1. Insert

The operation Insert(O,x, y) is implemented by inserting y after x
in x’s bottom-list, assigning y the label L,(y) = Ly(x) + [(L,(x.next) —
L,(x))/2], and setting y in the same group as x with y.group = x.group
such that L'(y) = L'(x). If Ly(x.next) — Ly(x) < 2, the x’s group is full,
which triggers a relabel operation. Otherwise, y can successfully obtain
a new label, then the insertion is complete in O(1) time. The relabel
operation has two steps. First, the full group is split into many new
groups, each of which contains at most IOgZN items, and new labels L,
are uniformly assigned for items in new groups. Second, newly created
groups are inserted into the top-list, if new group labels L’ can be as-
signed. Otherwise, we have to rebalance the group labels. That is, from
the current group g, we continuously traverse the successors g’ until
L(g") — L(g) > j*, where j is the number of traversed groups. Then, new

B. Guo and E. Sekerinski

Journal of Parallel and Distributed Computing 211 (2026) 105238

Lo 16 216 3.16 4-16 162 -1
h! g1 [« g2 [« g3 [«<{ga [t!
(i p——{e) (o) —{vp——At)

L, 7 7 7 7
(a)
0 15 16 17 30 162 -1
ht |« > g1 (€ > go [« > g3 [« > gy € tt

Fig. 1. An example of the OM data structure with N = 16. The squares are groups located in a single double-linked top-list with a head 4’ and a tail . The numbers
at the top of the squares are group labels. The circles are items with pointers to their own groups, located in a single double-linked bottom-list. The numbers at
the bottom of circles are item labels. (a) the initial state of O = {v,, v,, v3,v,}. (b) the intermediate state of O = {v,, v,, v3, 0y, Vs, Us}. (c) after inserting a new item u

(dashed circles) after v,, we get O = {v,,u, v, v3, 0y, s, Ug} by inserting a new group g (dashed square).

group labels can be assigned to groups between g and g’ with a w
gap, in which newly created groups can be inserted.

There are three important features in the implementation Insert:
(1) each group, stored in the top-list, can contain Q(log N) items, so
the total number of inserted groups is Q(N /log N) when inserting Q(N)
items; (2) the amortized cost of splitting groups is Q(1) per insert; (3)
the amortized cost of inserting a new group into the top-list is Q(log N)
per insertion. Thus, each Insert operation only costs amortized O(1)
time.

Example 1. [Insert]

Fig. 1 shows a simple example of the OM data structure. For simplic-
ity, we choose N = 2* = 16, so that for items the top-labels L' are 8-bit
integers (above groups as group labels), and the bottom labels are 4-bit
integers (below items).

Fig. 1(a) shows an initial state of the two-level lists and labels. The
top-list has head A" and tail ¢ labeled by 0 and 162 — 1, respectively,

and includes four groups g, to g, labeled with gap 16. The bottom-list
has head h, and tail 7, without labels, and includes four items v; to v,
located in four groups g, to g, with the same labels 7.

Fig. 1(b) shows an intermediate state after a number of Insert and
Delete operations. We can see that there does not exist a label space
between v; and v,. Both v, and v, are located in the group g,. We get
that g, is full when inserting a new item after v,.

In Fig. 1(c), a new item u is inserted after v,. But the group g, is
full (no label space after v,), which triggers a relabel process. That is,
the group g, is split into two groups, g; and g; first, the old group
g, has a single v,, which can assign L,, 15/2 = 7; second, the newly
created group g contains v, and v;, which can assign L, with a uni-
form distribution within their own group, 15/3 =5 and 2(15/3) = 10,
respectively. However, there is no label space between g, and g, to in-
sert the new group g, which will trigger a rebalance operation. That
is, we traverse groups from g, to g,, where g, is the first that satisfies
L(gy) — L(g;) = 15 > j2 (j = 3). Then, both g, and g; are assigned new

B. Guo and E. Sekerinski

top-labels as 20 and 25, respectively, which have a gap of 5. Now, g can
be inserted after g, with L(g) = L(g,) + (L(g,) — L(g;))/2 = 17. Finally,
we can insert u successfully after v, in g, with L,(u) = L,(v)) + (15—
Ly(v))/2=11.

3.2. Atomic primitives

As shown in Algorithm 1, the CAS atomic primitive takes three ar-
guments, a variable (location) x, an old value a and a new value b. It
checks the value of the variable x, and if it equals to the old value q, it
updates the pointer to the new value b and then returns true; otherwise,
it returns false to indicate that the updating fails. Here, we use a pair
of angular brackets, (...), to indicate that the operations in between are
executed atomically.

Algorithm 1: CAS(x, a, b).

1 (if x = a then x « b; return true
2 else return false)

// (...) atomic

The modern multicore architectures support atomic primitives
for reading or writing 64-bit integers. Typically, we assume that
the order list O has at most 232 items. In this case, the bottom-
labels L, are 32-bit integers and the top-labels L' are 64-bit
integers.

4. Parallel order maintenance data structure

In this section, we present the parallel version of the OM data struc-
ture. We start with the data structure definition and memory manage-
ment. Then, we discuss the parallel Delete operations. Continually, we
discuss the parallel Insert operation and show that the Order Snap-
shot is preserved at any steps, including the relabel process, which is
the main contribution of this work. Finally, we present the parallel
Order operation, which is lock-free and thus can be executed highly in
parallel.

4.1. Data structure definition and memory management

We allocate two arrays in memory for one OM data structure. The
first array Items stores all N items, and the second array Groups stores
all N group nodes. Each item x has pointers that point to the previous
item, the next item, and the parent group node. Similarly, each group
node g has pointers that point to the previous group and the next group.
All pointers are implemented using the array index rather than referenc-
ing a real memory address. Additionally, we need to allocate two arrays
ReclaimedItems and ReclaimedGroups to store the reclaimed indices
of items in Items and groups in Groups reclaimed (ready to be allocated
to new items and groups), respectively. Algorithm 2 shows the detailed
memory layout of the four allocated arrays.

An issue is how to manage the memory for Delete operations (de-
scribed in Algorithm 3). Once an item x and a group g are deleted
from Items and Groups, their index is added to ReclaimedItems and
ReclaimedGroups without physically deallocating the memory, respec-
tively. The index of the deleted item x and the deleted group g are
added to ReclaimedItems and ReclaimedGroups for recycling, respec-
tively. When a new item x and a group g are inserted, we can obtain
a free item space and a free group space from ReclaimedItems and
ReclaimedGroups, respectively.

This method only needs to allocate the memory once, thereby avoid-
ing the frequent memory allocation for each inserted item or group.
However, if there are more than N items or groups, all arrays need to
be resized to obtain a larger capacity than before, by allocating new
large arrays and copying the data from the old arrays to the new ar-
rays. Each time, we can double the capacity of the arrays to reduce the
number of memory copy operations.

Journal of Parallel and Distributed Computing 211 (2026) 105238

Algorithm 2: Memory layout for items and groups stored.

1 Struct Item contains

2 pre: int

3 next: int

4 label: int with 32-bits
5 group: int

6 live: bool

7 Struct Group contains

pre: int
9 next: int
10 label: int with 64-bits
11 live: bool

12 Items < new Item[N] as an array to store N items

13 Groups « new Group[N] as an array to store N groups

14 ReclaimedItems < new int[N] as an array to store the indices
of reclaimed items

15 ReclaimedGroups < new int[N] as an array to store the indices
of reclaimed groups

4.2. Parallel delete

4.2.1. Algorithm

Algorithm 3 shows the detailed steps of parallel Delete. For each
item x in O, we use a Boolean status x./ive to indicate if x is in O or
has been removed. Initially x./ive is true. We use the atomic primi-
tive CAS to set x./ive from true to false to logically remove the item
x first (line 1). The benefit of such deletion is that repeated deletion
of x can be avoided by returning failure, and then x does not have
to be locked for continuous operations. In lines 2-6 and 13, we re-
move x from the bottom-list in Q. To do this, we first lock y = x.pre,
x, and x.next in order to avoid deadlock (lines 2-4). Here, after locking
y, we have to check that y still equals x.pre in case x.pre is changed by
other workers (line 3). Then we can safely delete x from the bottom-
list, and set x’s pre, next, L,, and group to empty (lines 6 and 7). For
the group g = x.group, we need to delete g when it is empty, which
is analogous to deleting x (lines 8-14). We use the atomic primitive
CAS to set g.live from true to false to logically remove g from the
list (line 8). Finally, we unlock all the locked items in reverse order
(line 15).

Algorithm 3: Parallel-delete(Q, x).

1 if not CAS(x.live, true, false) then return fail(
delete x)

y « x.pre; Lock(y)

if y # x.pre then Unlock(y); goto line 2

Lock(x); Lock (x.next)

g < x.group

delete x from bottom-list by setting x.pre.next « x.next and
X.next.pre < Xx.pre

set x.pre, x.next, L,(x), and x.group to @

8 if |g| =0 A CAS(g.live,true,false) then

// logically

L= N I

N

9 g’ « g.pre; Lock(g")

10 if g’ # g.pre then Unlock(g’); goto line 9

11 Lock(g); Lock(g.next)

12 delete g from top-list by setting g.pre.next < g.next and
g.next.pre < g.pre

13 set g.pre, g.next, and L(g) to @

14 Unlock(g.next); Unlock(g); Unlock(g’)

-

5 Unlock(x.next); Unlock(x); Unlock(y);

B. Guo and E. Sekerinski

4.2.2. Correctness

For deleting the item x, we lock three items, x.pre, x, and x.next in
order. Similarly, for deleting the group g, and lock g.pre, g and g.next in
order. Therefore, there are no blocking cycles and thereby no deadlock.
After removing the item x from the bottom-list, the bottom-labels of all
the other items in O are not changed. If the group g becomes empty
after deleting x, g is also removed from the top-list, and the top-labels
of all the other groups are not changed. Therefore the Order Snapshot
is always preserved.

4.2.3. Complexities

Suppose there are m items to be deleted in the OM data structure. The
total work is O(m). In the best case, m items can be deleted in parallel
by P workers with O(1) depth, so that the total running time is O(m/P).
In the worst-case, m items have to be deleted one by one, e.g. P workers
are blocked as a chain, with O(m) depth, so that the total running time
is O(m/P + m).

However, for deleting multiple items in parallel, a blocking chain is
unlikely to appear when there is a large number of items with several
workers. For example, given a list of three items x,x, and x;, three
workers p;,p, and p; delete the three items, respectively. In the case
of three workers running simultaneously, we have 1) p; first locks x,
and x3, 2) p, lock x; and wait to lock x, and x3 (both already locked
by p3), and 3) p; waits to lock x; (already locked by p,) and x, (al-
ready locked by p;). We have p, waiting for p, and p, waiting for
p3, which forms a blocking chain and reduces to sequential. For an-
other example, given a list of 1000 items x;, x5, ..., Xgo, three work-
ers p;,p, and p; delete the three items x,x;o, and x,, respectively.
Three workers cannot form a blocking chain and can perform in a
highly parallel way. In our experiments, there are millions of items
and at most 64 workers, so the blocking chain of workers is unlikely to
exist.

4.3. Parallel insert

4.3.1. Algorithm

Algorithm 4 shows the detailed steps for inserting y after x. Within
this operation, we lock x and its successor z = x.next in that order (lines
1 and 7). For obtaining a new bottom-label for y, if x and z are in the
same group, L,(z) is the right bound; otherwise, N is the right bound,
supposing L, is a (log N)-bit integer (line 2). If there does not exist a
label gap in the bottom-list between x and x.next, we know that x.group
is full, and thus the Relabel procedure is triggered to make label space
for y (line 3). Then, y is inserted into the bottom-list between x and x.next
(line 6), in the same group as x (line 4), by assigning a new bottom-label
(line 5).

The Relabel(x) procedure splits the full group of x. We lock x’s group
g, and gy’s successor g.next (line 9). We also lock all items y € g, except
x and z = x.next, as both x and z are already locked in line 1 (line 10).
To split the group g, into multiple new smaller groups, we traverse the
items y € g, in reverse order by three steps (lines 11 - 15). First, if there
does not exist a label gap in the top-list between g, and gj.next, the
Rebalance procedure is triggered to make label space for inserting a
new group with assigned labels (lines 12 and 13). Second, we split 1°g2N
items y from g, in reverse order to the new group g, which maintains
the Order Snapshot (line 14). Third, we assign a new L, to all items in
the new group g by using the AssignLabel procedure (line 15), which
also maintains the Order Snapshot. The for-loop (lines 11 - 15) stops if
fewer than &Y jtems are left in go- We assign a new L, to all left items
in g, by using the AssignLabel procedure (line 16). Finally, we unlock
all locked groups and items (line 17).

In the Rebalance(g) procedure, we make label space after g to insert
new groups. Starting from g.next, we traverse groups g’ in order until
w > j% by locking g’ if necessary (g and g.next are already locked in
line 9), where j is the number of visited groups and w is the label gap
L(g’) — L(g) (lines 19-22). That means j items will share a total of w > ;2

Journal of Parallel and Distributed Computing 211 (2026) 105238

label space. All groups whose labels should be updated are added to the
set A (line 21). We assign new labels to all groups in A by using the
AssignLabel procedure (line 23), which maintains the Order Snapshot.
Finally, we unlock groups locked in line 21 (line 24).

Notably, in the AssignLabel(A, L, [, w) procedure, we assign labels
without affecting the Order Snapshot, where the set A includes all el-
ements whose labels need updating, £ is the label function, [, is the
starting label, and w is the label space. Note that £ can correctly return
the bounded labels, e.g., L,(x.next) = N when x is at the tail of its group
x.group. For each z € A in order, we first correctly assign a temporary
label £(z) (line 27), which can replace its real label £(z) at the right
time by using the stack S (lines 28 - 32). Specifically, for each z € A
in order, if its temporary label L(z) is between L(z.pre) and L(z.next),
we can safely replace its label by updating £(z) as £(z) (lines 29 and
30), which maintains the Order Snapshot; otherwise, z is added to the
stack .S for further propagation (line 32). For propagation, when one
element z replaces the labels (line 30), indicating that all elements in
stack S can find enough label space, each x € S can be popped out by
replacing its label (line 31). This propagation still maintains the Order
Snapshot.

Example 2. [Parallel Insert] Fig. 1 shows an example for parallel
Insert. In Fig. 1(b), we lock v, and v, in order when inserting u af-
ter v;. However, there is no label space, and the group g, is full, which
triggers the Relabel procedure. For the first step of relabelling, the other
item v; in group g, is locked to split the group g;.

In Fig. 1(c), we lock g, and g, in order when inserting a new group
g after g,, which triggers the Rebalance procedure on the top-list. For
rebalancing, g; and g, are locked in order. The new temporary labels i
of g, and g; are generated as 20 and 25. To replace real labels with
temporary ones, we traverse g, and g; in order. First, we find that
L(g)) < f(gz) < L(g3) as 15 <20 <17 is false, so that g, is added to
the stack such that .S = {g,}. Second, when traversing g;, we find that
L(gy) < f(g3) < L(gy)asl6< 25 < 30is true, so that L(g3) is replaced as
25. In this case, the propagation of S begins, and g, is popped out with
L(g,) replaced as 20. Finally, g; and g, are unlocked, and the Rebalance
procedure finishes.

After rebalancing, the new group g can be inserted after g, with
L(g;) = 17. Relabeling continues. The item v; is split out to g with
Ly(v3) = 15 A L'(v3) = 17 maintaining the Order Snapshot; similarly, v,
is also split out to g. Now, both v, and v; require a new L, to be as-
signed by the AssignLabel procedure. The new temporary label L,
of v, and v, are generated as 5 and 10, respectively. For replacement,
we traverse v, and v in order by two steps. First, for v,, we find that
L_b(uz) < L,(v3) is true, so that L(v,) is replaced as 5. Second, for v;, we
find that L,(v,) < L_,,(v3) is true, so that L,(v;) is replaced as 10 There is
no further propagation since the stack S is empty. Now, only one item
v; is left in g; and L,(v,) is set to 7. Finally, the new item u is inserted
after v; in g; with L,(u) =11 A L'(u) = 15.

Example 3 (Assign Label). In Fig. 2, we show an example of how the
AssignLabel procedure preserves the Order Snapshot. The label space
is from O to 15, shown as indices. There are four items v, v,, v3, and
v, with initial labels 1, 2, 3, and 14, respectively; also, four temporary
labels, 3, 6,9, and 12, are assigned with uniform distribution to them. We
traverse items from v, to v, in order. First, v; and v, are added to the
stack .S. Then, v; can safely replace its old label with its new temporary
label 9, which makes space for v, that is at the top of S. So, we pop out
v, from S and v, gets its new label 6, which makes space for v, that
is at the top of S. So, we pop out v; from § and v; gets its new label
3. Finally, v, can safely get its new label 12. In a word, updating the
vy’s label will repeatedly make space for v, and v; in the stack. During
such a process, we observe that each time an old label is updated with
a new temporary label, the labels always correctly indicate the order.
Therefore, the Order Snapshot is always preserved and parallel Order
operations can take place.

B. Guo and E. Sekerinski

Journal of Parallel and Distributed Computing 211 (2026) 105238

index 1O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
oo [1]2f3] [| | []| []] |4

V1N V2 U3 V4
b e 6 o 2

Fig. 2. An example of the AssignLabel procedure.

4.3.2. Correctness

There are four lock operations. First, we lock items x and x.next in
order (lines 1 and 7). Second, in the Relabel procedure, we lock g,
and gj.next in order (lines 9 and 17). Third, we lock all items in the
group g, except x and z that have been locked in line 1 (lines 9, 10, and
17) in order. Finally, we lock a batch of group g’ in the while-loop in
order (lines 21 and 24). We can see that all four locking operations lock
items or groups in the order of their double-linked list from head to tail.
Therefore, there are no blocking cycles and thereby no deadlock.

In Algorithm 4, there are two cases where the labels are updated:
splitting groups (lines 11-15) and assigning labels (lines 15, 16, and 23)
by using the AssignLabel procedure (lines 25-32). Intuitively, to prove
that the Order Snapshot is preserved, we need to show that the labels
can always correctly indicate the order at any time they are updating,
including splitting groups and assigning labels. Specifically, we prove
that the Order Snapshot is preserved with Theorems 1 and 2.

Theorem 1.
preserved.

When splitting full groups (line 14), the Order Snapshot is

Proof. The algorithm splits k’iN items y out from g into the new group

g (line 14), where each y € g is traversed in reverse order within the
for-loop (lines 11-15). For this, the invariant of the for-loop is that y has
largest L, within g; the new group g has L(g) > L(g); also, y satisfies
the Order Snapshot:

Vxeg:
A (L(gy) < L(g)) A (y.pre <y < y.next)

x#y = Ly(y) > Ly(x)

We now argue that the for-loop preserves this invariant:

- Vxegy:x#y = Ly(y) > L,(x) is preserved as y is traversed in
reverse order within g, and all other items)’ that have L,(y) < L,(3')
are already split out from g,.

- L(gy) < L(g) is preserved as g is newly inserted into top-list after g,.

— y.pre < yis preserved as we have y € g A y.pre € g, and L(g;) < L(g).

— y < y.next is preserved as if y and y.next all in the same group g, we
have L,(y) < L,(y.next); also, if y and y.next in different groups, we
have y is the first item moved to g or y is still located in g, which
their groups indicates the correct order.

At the termination of the for-loop, the group g is split into multiple
groups preserving the Order Snapshot. O

Theorem 2. When assigning labels by using the AssignLabel procedure
(lines 25-32), the Order Snapshot is preserved.

Proof. The AssignLabel procedure (lines 25-32) assigns labels for all
items z € A. The temporary labels are first generated in advance (line
27). Then, the for-loop replaces the old label with new temporary labels
(lines 28-32). The key issue is to argue the correctness of the inner
while-loop (line 31). The invariant of this inner while-loop is that the
top item in .S has a temporary label that satisfies the Order Snapshot:

VyeS:(y#Stop = y<Sitop) AN y<2)

A x=S.top = L(x.pre) < Z(x) < L(x.next)

The invariant initially holds as L(z) is correctly replaced by the tempo-
rary label L(z) in line 30 and z is x.next, so that £(x) < £(z); also, we
have (x.pre) < L(x) as if it is not satisfied, x should not have been added
into S, which causes contradiction. We now argue that the while-loop
(line 31) preserves this invariant:

-VyeS:(y#Stop = y=<S.top) A y=zispreserved as all items
in S are added in order, so the top item always has the largest order;
also, since all item in A are traversed in order, so z has the larger
order than all item in S.

- x=S.top = L(x) < L(x.next) is preserved as L(x.next) is already
replace by the temporary label £(x.next) and x is precede x.next by
using temporary labels.

- x=S.top = L(x.pre) < L(x)is preserved as if such an invariant is
not satisfied, x should not be added into .S, which causes a contra-
diction.

At the termination of the inner while-loop, we get S = §, so that all
items that precede z have replaced new labels maintaining the Order
Snapshot. At the termination of the for-loop (lines 28-32), all items in
A have been replaced with new labels. O

4.3.3. Complexities

For the sequential version, it is proven that the amortized time is
O(1). The parallel version has some refinement. That is, the AssignLabel
procedure traverses the locked items two times for generating temporary
labels and replacing the labels, which costs amortized time O(1). Thus,
if m items are inserted in parallel, the total amortized work is O(m). In
the best case, m items can be inserted in parallel by P workers with
amortized depth O(1), so that the amortized running time is O(m/P).

The worst-case can easily happen when all insertions are accrued in
the same position of O. The relabel procedure is triggered with the con-
stant amortized work W = O(1) for each inserted item. In the worst-case,
m items have to be inserted one-by-one, e.g. P workers simultaneously
insert items at the head of O with amortized depth O(m), and thus the
amortized running time is O(m/P + m).

Such a worst-case can be improved by batch insertion. The idea is
that we first allocate enough label space for m/P items per worker, then
P workers can insert items in parallel. However, this simple strategy
requires pre-processing of O and does not change the worst-case time
complexity.

4.4. Parallel order

4.4.1. Algorithm

Algorithm 5 shows the detailed steps of Order. When comparing the
order of x and y, they must not have been deleted (line 1). We first com-
pare the top-labels of x and y (lines 2-5). Two variables, 7 and ¢, obtain
the values of L'(x) and L'(y) for comparison (line 2), and the result is
stored as r. After that, we have to check whether L(x) or L'(y) has been
updated or not; if that is the case, we have to redo the whole procedure
(line 5), which is to go back to line 1 and execute lines 1 to 5 again.
In other words, when comparing L’(x) and L'(y), both values cannot be
updated by other workers. Second, we compare the bottom-labels of x

B. Guo and E. Sekerinski

Journal of Parallel and Distributed Computing 211 (2026) 105238

Algorithm 4: Parallel-insert(O, x,).

Algorithm 5: Parallel-order(Q, x, y).

1 Lock(x); z « x.next; Lock(z)

2 if x.group = z.group then b «— Ly(z) else b « N

3 if b— L,(x) <2 then Relabel(x,z) // A full group
triggers relabel

4 insert y into bottom-list between x and x.next by setting
y.next < x.next, y.pre < x, x.next « y, and x.next.pre « y

5 Ly(y) < Ly(x) + (b — Ly(x))/2]

6 .group < x.group

7 Unlock(x); Unlock(z)

8 procedure Relabel (x,z)

9 8o « x.group; Lock(g); Lock(gy.next);
10 Lock all items y € g, with y # x A y # z in order from head
to tail

// Split a full group

1 for y € g, in reverse order until less than]°g2N items left in
go do
12 if L(gy.next) — L(g) < 2 then Rebalance(g,)
// Rebalance groups
13 insert a new group g into the top-list after g, by setting

g.next < g.next, g.pre < gy, go.next < g and
go-next.pre «— g; L(g) <
L(go) + | (L(go-next) — L(gy))/2]

14 split out ngN items y into g

15 AssignLabel(g, L;,0,N)

16 AssignLabel(gg, L;,0, N)

17 Unlock all items y € g, with y # x A y # z, go.next, and g,

18 procedure Rebalance(g)
19 g —gmnext;j— L, w— L(g)—L(g); A<¢

20 while w < j2 do
21 A<~ AU {g'}; g « g'next; Lock(g")
22 jej+1l,w« L) - L(g)

23 AssignLabel (A, L', L'(g), w)
relabel process
24 Unlock all locked groups in line 21.

// Assign labels for

25 procedure AssignLabel (A, L, [, w)

26 S < empty stack; k < 1; j « |A| +1

27 forzeAinorderdoZ(z)=l+k-w/j;k<—k+1
28 for z € A in order do

29 if L(z.pre) < L(z) < L(z.next) then

30 L(z) « L(z)

31 while S # @ do x « S.pop(); L(x) « L(x)
32 else S.push(z)

and y, if their top-labels are equal (lines 6-9). Similarly, two variables,
b and ¥, obtain the value of L,(x) and L,(y) for comparison (line 7),
and the result is stored as r. After that, we have to check whether four
labels are updated or not; if any label is the case, we have to redo the
whole procedure (lines 8 and 9). We can see that our parallel Order
is lock-free, allowing for high parallelism. During the order compari-
son, x or y cannot be deleted (line 10). We return the result at line
11.

It is true that there is an ABA problem. That is, L'(x) and L'(y) are pos-
sibly updated multiple times but remain the same values as t and ¢’ (line
5). In other words, L’(x) and L'(y) are updated but may not be identified
when comparing ¢ and ¢ (line 4), which can lead to a wrong result. Also,
line 8 has the same problem. To solve this problem, each top-label or
bottom-label, L' or L,, includes an 8-bit counter to record the version.
Each time, the counter increases by one once its corresponding label is

1 if x.live = false v y.live = false then return fail
t,t',r « L'(x),L'(y),®
if t #¢ then

ret<t

if 1 £ L'(x) vt # L'(y) then goto line 1

bt — Ly(x),Ly(y); r < b<d

ift# L'(x)vt # L'(y) Vb # Ly(x) vV # L,(y) then
‘ goto line 1

if x.live = false v y.live = false then return fail

11 return r

2
3
4
5
6 else
7
8
9

-
=]

updated. With this implementation, we can safely check whether the
label is updated or not merely by comparing the values (lines 5 and 8).

Example 4. [Order] In Fig. 2, we show an example to determine the
order of v, and v; by comparing their labels. Initially, both v, and v;
have old labels, 2 and 3. After the Relabel procedure is triggered, both
v, and v; have new labels, 6 and 9, in which the Order Snapshot is
preserved. However, it is possible that Relabel procedures are triggered
in parallel. We first get £(v;) =3 (old label) and second get £L(v,) =6
(new label), but it is incorrect for L£(v,) > L(v3). After we get L(v,) =
6, the value of L(v,) has to be already updated to 9 since the Order
Snapshot is maintained. In this case, we redo the whole process until
L(v,) and L(v3) are not updated during comparison. Thus, we can get
the correct result of £(v,) < L(v3) even the relabel procedure is executed
in parallel.

4.4.2. Correctness

We have proven that Parallel-Insert preserves the Order Snap-
shot even though relabel procedures are triggered, by which labels cor-
rectly indicate the order. In this case, it is safe to determine the order
for x and y in parallel. We first argue the top-labels (lines 2 - 5). The
problem is that we first get 1 < L'(x) and second get ' « L'(y) succes-
sively (line 2), by which / and // may be inconsistent, due to a Relabel
procedure may be triggered. To argue the consistency of labels, there
are two cases: 1) both ¢ and ¢’ obtain old labels or new labels, which
can correctly indicate the order; 2) the ¢ first obtains an old label and ¢/
second obtains a new label, which may not correctly indicate the order
as x may already updated with a new label, and vice versa; if that is the
case, we redo the whole process. On the termination of parallel Order,
the invariant is that and ¢ are consistent and thus correctly indicate
the order. The bottom-labels are analogous (lines 6-9).

We can see our parallel Order operation is lock-free. First, it does
not use locks. Second, it is possible that the loops occur (lines 5 and 9),
when other workers are doing the Relabel operation simultaneously,
which causes the labels of related items to be updated. However, the
Relabel has a low probability of happening (evaluated in Section 6.2),
will be completed quickly, and thus the tow loops cannot all spin forever
without successful. Third, our parallel Order is linearizable regardless
of the loops that occur (lines 5 and 9). Therefore, our parallel Order
operation completes in a finite number of steps and has lock-freedom.

4.4.3. Complexities

For the sequential version, the running time is O(1). For the parallel
version, we have to consider the frequency of redo. It has a significantly
low probability that the redo will be triggered. This is because the la-
bels are changed by the Relabel procedure, which is triggered when
inserting Q(log N) items. Even if the labels of x and y are updated when
comparing their order, it still has a tiny probability that such label up-
dating happens during the comparison of labels (lines 4 and 7).

B. Guo and E. Sekerinski

Thus, supposing m items are comparing their orders in parallel, the
total work is O(m), and the depth is O(1) with a high probability. So that
the running time is O(m/P) with high probability.

5. Implementation
In this section, we discuss the implementation details of our method.
5.1. Lock implementation

OpenMP (Open Multi-Processing) [17] is an application program-
ming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C+ +, and Fortran, on many plat-
forms, instruction-set architectures, and operating systems. We use
OpenMP as the threading library to implement the parallel algorithms.
In this work, the key issue is how to implement the synchronization
locks. There are two different locks. One solution is to use the OpenMP
lock, “omp_set_lock” and “omp_unset_lock”. Each worker will sus-
pend the working task until the specified lock is available. The OpenMP
lock is efficient when substantial computation is performed within the
locked region with few lock and unlock operations. The reason is that
suspended workers require a low cost, but the operations of suspending
and waking up workers have a high cost.

The other solution is the spin lock, which can be implemented by
the atomic primitive CAS. Given a variable x as a lock, the CAS will
repeatedly check x, and set x from false to true if x is false. In other
words, one worker will busy-wait for the lock x until it is released by
other workers without suspension.

Algorithm 6 shows an implementation of the spin lock. To reduce
bus traffic, x.lock is tested before using CAS to set x./ock from false
to true (line 3). Furthermore, it is more effective for other workers to
back-off for some duration, giving competing workers the opportunity
to acquire the lock. Typically, especially in our use cases, the large num-
ber of unsuccessful attempts indicates that the worker should back off
for a longer period. Here, we use a simple strategy that exponentially
increases the back-off time for each try (lines 1 and 4-6), where i and j
are local variables without increasing bus traffic [18].

Algorithm 6: Lock(x).

10«1

2 while true do

3 if x.lock = false A CAS(x.lock,false,true) then return
4 Ji

5 while j >0do j « j—1

6 i<—2Xi

5.2. Capacity of OM

In our experiment, for easy implementation, the bottom-labels L,
can be 32-bit integers, and the top-labels L' can be 64-bit integers. One
advantage is that reading and writing such 32-bit or 64-bit integers are
atomic operations on modern machines. As we use 8-bit for the version
number to avoid the ABA problem in Section 4.4.1. So, the total capacity
of N is 232-8 = 224 which is more than 16 million.

Currently, both new modern ARM and X86 architectures already sup-
port 128-bit atomic CAS operation. Other atomic operations, such as Read
and Write, do not support 128-bit atomicity, but we can emulate them
using the CAS operation. So, we can get a large capacity up to 2648 = 236,

6. Experiments

In this section, we implement our parallel approach, the so-called
“Ours”. We also implement the existing sequential approach in [2] as a

Journal of Parallel and Distributed Computing 211 (2026) 105238

baseline for comparison, the so-called “Seq”. Note that Seq has almost
the same performance as Ours when executing with a single worker se-
quentially, and we cannot figure out the difference in the figures. There-
fore, we report both Seq and Ours with a single worker in the same fig-
ure. Unfortunately, we are unable to implement the parallel OM data
structure in [3], which is combined with series-parallel maintenance
and has a totally different mechanism from our implementation. Thus,
we do not experimentally compare this approach with ours.

For the existing parallel or concurrent OM data structure, the work
in [16] is not published, and we cannot find the implementation; the
work in [3] is proposed specifically for series-parallel (SP) maintenance,
not for the commonly used OM data structure, and we cannot implement
it for evaluation. Therefore, we cannot compare “Ours” with the above
two methods.

Specifically, we evaluate three order maintenance operations, Order,
Insert, and Delete. We have four test cases, No, Few, Many, and Max,
for the number of triggered relabeling processes. The source code is
available on GitHub.!

6.1. Experiment setup

The experiments are performed on a server with an AMD Ryzen
Threadripper PRO 3995WX (Zen 2, 64 cores, 128 hyperthreads, 256 MB
of last-level shared cache), which consists of multiple NUMA (Non-
Uniform Memory Access) domains due to its chiplet-based architec-
ture. The hyperthread technique allows the CPU to process two sets
of instructions (threads) simultaneously on one core by utilizing “dead
time” when the core would otherwise be waiting for data. We choose
the number of workers to increase exponentially, as 1,2,4,8, 16,32, 64,
and 128, to evaluate the parallelism. For this purpose, we assign each
worker as a working thread to be pinned to one CPU core using
“pthread_setaffinity_np” supported by the Linux system, so that
multiple workers can physically run in parallel. Threads were pinned
in a NUMA-aware manner, filling all cores within a NUMA node before
moving to the next node. Memory allocation followed the same NUMA
locality policy to minimize remote memory access. With different num-
bers of workers, we perform each experiment at least 100 times and
calculate the mean with 95% confidence intervals. The server has 256
GB memory and runs the Ubuntu Linux (22.04) operating system. All
tested algorithms are implemented in C+ + and compiled with g+ +
version 11.2.0 with the -O3 option. OpenMP? version 4.5 is used as the
threading library.

We evaluate the OM data structure with four experiments:

— Insert: we insert 10 million items into O.

— Order: we compare the order of two randomly chosen items. There
are 10 million Order operations in total.

— Delete: we delete all inserted items, a total of 10 million times.

— Mixed: again, we insert 10 million items, mixed with 100 million
Order operations. For each inserted item, we compare its order with
the other 10 items that are randomly chosen; therefore, there are
a total of 100 million order comparisons. The purpose is to investi-
gate the frequency of “redo” occurring in the Order operations when
there are parallel Insert operations. This experiment is to simulate
the OM operations in graph algorithms, e.g., k-core maintenance.
Real data graphs, such as social networks, are typically sparse, with
a number of edges that is approximately 10 times the number of ver-
tices; traversing edges requires Order operations and dealing with
vertices needs Insert or Delete operations.

For each experiment, we have four test cases by choosing different

numbers of positions for inserting:

! https://github.com/Itisben/Parallel-OM.git
2 https://www.openmp.org/

https://github.com/Itisben/Parallel-OM.git
https://www.openmp.org/

B. Guo and E. Sekerinski

Table 2
The detailed numbers of the relabel procedure.
Insert Mixed
Case Relabel # L,# L'# AvgLabel# OrderRedo#
No 0 10,000,000 0 1 0
Few 2483 10,069,551 4967 1 0
Many 356,624 19,985,472 5,754,501 2.6 0
Max 357,142 19,999,976 99,024,410 11.8 0

No Relabel case: we have 10 million positions, the total number of ini-
tial items in O, so that each position averagely has 1 inserted items.
Thus, it almost has no Relabel procedures triggered when inserting.

Few Relabel case: we randomly choose 1 million positions from 10

million items in O, so that each position averagely has 10 inserted

items. Thus, it is possible that a few Relabel procedures are triggered
when inserting.

— Many Relabel case: we randomly choose 1000 positions from 10 mil-
lion items in O, so that each position averagely has 10,000 inserted
items. Thus, it is possible that many Relabel procedures are trig-
gered when inserting.

— Max Relabel case: we only choose a single position (at the middle

of 0) to insert 10,000, 000 items. In this way, we obtain a maximum

number of triggered relabel procedures.

All items are inserted on-the-fly without preprocessing. In other
words, 10 million items are randomly assigned to multiple workers, e.g
32 workers, even if in the Max case all insertions are reduced to sequen-
tial execution.

6.2. Evaluating relabelling

In this test, we evaluate the Relabel procedure triggered by Insert
operations over four test cases, No, Few, Many, and Max. Since the differ-
ent numbers of workers of Ours exhibit the same trend, we have chosen
32 workers for this evaluation. Of course, both Ours and Seq have the
same results, so we report them together.

In Table 2, columns 2-4 show the details in the Insert experiment,
where Relabel# is the times of triggered Relabel procedures, L,# is
the number of updated bottom-labels for items, L'# is the number of
updated top-labels for items, and AvgLabel# is the average number of
updated labels for each inserted items when inserting 10 million items.
We can see that, for four cases, the amortized numbers of updated labels
increase slowly, where the average numbers of inserted items for each
position increase by 1, 10, 10,000, and 10 million. This is because our
parallel Insert operations have O(1) amortized work. Specifically, we
make several observations:

— The No case does not trigger Relabel, updating only one L, per
insert.

— The Few case triggers 2.5 thousand Relabel, updating 1.007 L,, 0.005
L', and totally about one label per inserted item.

- The Many case triggers 0.36 million Relabel, updating 2 L,, 0.6 L,
and totally about 2.6 labels per inserted item.

— The Max case triggers 0.36 million Relabel, which is the same as
Many the case. But it updates 2 L,, 9.9 L', totally about 11 labels per
inserted item.

— The Max case is the worst-case of Insert operations, but it has ac-
ceptable about 11 updated labels for each inserted item. This is be-
cause the Insert operations have amortized O(1) time complexity.
Although relabel processes introduce short bursts of work, they are
unlikely to happen.

In Table 2, the last column shows the times of redo (the “goto” in
lines 5 and 9 of Algorithm 5) for Order operations in the Mixed ex-
periment, which are all zero. Since Mixed has mixed Order and Insert
operations, we may redo the Order operation if the corresponding labels

Journal of Parallel and Distributed Computing 211 (2026) 105238

are being updated. However, Relabel happens with a low probability;
also, it is a low probability that related labels are changed when com-
paring the order of two items. This is why the times of redo are zero,
leading to high parallel performance.

6.3. Evaluating the running time

In this test, for Ours, we exponentially increase the number of work-
ers from 1 to 128 and evaluate the real running time. For Seq, we use
a single worker. We perform Insert, Order, Delete, and Mixed over four
test cases, No, Few, Many, and Max.

The plots in Fig. 3 depict the performance. The x-axis is the number
of workers, and the y-axis is the execution time (milliseconds). Note that
we compare the performance by using two kinds of lock: the OpenMP
lock (denoted as dashed lines) and the spin lock (denoted as solid lines),
since both locks are widely used in concurrent programming. A first look
reveals that running times normally decrease with increasing numbers of
workers, except for the Max case over the Insert and Mixed experiments.
Specifically, we make several observations:

— The Seq has the same performance as Ours when using spin locks
and a single worker. Therefore, we depict the Seq together with Ours
with a single worker in plots. The reason is that even Ours has ex-
tra cost on atomic CAS operations, there does not exist contention
with a single worker, and thus these atomic operations can perform
efficiently with significant optimization by the compiler.

— For the experiment of Order, it is implemented as lock-free without
using OpenMP lock or spin lock. The No and Few cases are much
slower than the Many and Max cases. The reason is that when each
item is distributed averagely across the large size of the list for the No
and Few cases, the comparisons are effectively random across a huge
memory space, reducing cache hit rates. In contrast, the Many and
Max cases repeatedly access a smaller subset of memory, improving
cache locality and thereby the performance.

— Three experiments, Insert, Delete, and Mixed, which use the spin lock,
are much faster than using the OpenMP lock. This is because the lock
regions always have few operations, and busy waiting (spin lock)
is much faster than suspension waiting (OpenMP lock). Unlike the
above three experiments, the Order experiment does not show any
differences since Order operations are lock-free without using locks
for synchronization.

— For the Max case of Insert and Mixed, unexpectedly, the running
times increase with increasing number of workers. The reason is that
the Insert operations are reduced to sequential in Max case since
all items are inserted in the same position. Thus, it has the highest
contention on shared positions where multiple workers are accessing
at the same time, especially for 64 workers.

— For the Many case of Insert and Mixed, the running times decrease
until using 4 workers. From 8 workers, however, the running times
begin to increase. This is because the Insert operations have only
1000 positions in the Many case, and thus it may have a high con-
tention on shared positions when using more than 4 workers.

— Over the Order and Delete experiments, we can see that the Many and
Max cases are always faster than the Few and cases. This is because
the Few and No cases have 1,000 and 1 operating positions, respec-
tively; all of these positions can fit into the CPU cache with high
probability, and accessing the cache is much faster than accessing
the memory.

— Over the Order experiments, the Many and Max cases do not have
expected scalability between 64-worker and 128-worker. The rea-
son is that the CPU has only 64 hardware cores but supports 128
threads via hyperthreading, and a high number of workers leads
to high contention, which affects parallel performance with 128
workers.

B. Guo and E. Sekerinski

Journal of Parallel and Distributed Computing 211 (2026) 105238

Insert Order
103 4
- No —& Many
¥ Few —@— Max
m m
E £ 1024
Q ()
£ -0~ No — Many | E
-~ -~
= 103 4 —@— Max)
‘c ‘= 10 4
C C
2 2
100 4
seq 2 4 8 16 32 64 128 seq 2 4 8 16 32 64 128
worker number worker number
Delete Mixed
= 104
103 4 &~ - No —& Many
¥ Few —€@— Max
m m
E E
£ g
£ < —— Many
S 102 B
2 2
z = 103 4
c =
2 2
10! 4
seq 2 4 8 16 32 64 128 seq 2 4 8 16 32 64 128
worker number worker number
Fig. 3. Evaluating the running times.
Order
128 1 128 1 -~ No —— Many ’,"
64 1 64 § —¥— Few —@— Max _“84.4
32 q 32 i
@ 16 A 2 164
2 83 3 81
5 4 g
& 5] g
2 -
14 14
1/2 4
1/4 4 12
T T T T T T T T 1/4 T T T T T T T
seq 2 4 8 16 32 64 128 seq 2 4 8 16 32 64 128
worker number worker number
Delete Mixed
128 7 ¢ no —A— Many -7 128 1 ¢~ No —A— Many -7
64 4 —¥— Few —@— Max — 64 4 —¥— Few —@— Max —==
324 32]
n 16 A nw 16
Qo o
g 8 g 8
o 4] o 4]
Q o
0 2) 2 1
11 13
1/2 124
1/4 1 T T T T T T T T 1/4 1 T T T T T T T T
seq 2 4 8 16 32 64 128 seq 2 4 8 16 32 64 128

worker number

worker number

Fig. 4. Evaluate the speedups by increasing the number of workers (Strong Scaling).

6.4. Evaluating the speedups

In this experiment, we measure the Strong Scaling by increasing the
number of workers and fixing the total work. The plots in Fig. 4 show
the speedups of Ours. The x-axis is the number of workers, and the y-axis
is the speedups, which are the ratio of running times (using spin locks)
between the sequential version and using multiple workers. The dotted
lines show the perfect speedups as a baseline. The numbers beside the
lines indicate the maximal speedups. A first look reveals that all experi-

10

ments achieve speedups when using multiple cores, except for the Max
case over insert and Mixed experiments. Specifically, we make several
observations:

— For all experiments, we observe that the speedups are around 1/4 to 1
when using 1 worker in all cases. This is because, for all operations of
OM, the sequential version has the same work as the parallel version.
Especially, for Delete, such speedups are low as 1/2 - 1/4, as locking
items for deleting costs much running time.

B. Guo and E. Sekerinski

time ratio

time ratio

running time (ms)

time (ms)

running

Journal of Parallel and Distributed Computing 211 (2026) 105238

Insert Order
20 20
-0- No —A— Many - No —A— Many
—¥— Few —@— Max —¥— Few —@— Max
15 A
o
e
5 10
£
5 .
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
item size le8 item size le8
Delete Mixed
20 20
-- No —A— Many -- No —— Many
—¥— Few —@— Max —¥— Few —@— Max
15 A
o
[
10 5
£
=
5 -
0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
item size le8 item size le8
Fig. 5. Evaluate the scalability with 32 workers and increasing the item size (Weak Scaling).
Insert Order
.] NN
T T g
m
E
[0) 101 4
103 4 - No —— Many | £ -~ No —A— Many
—¥— Few —@— Max o ~¥— Few —@— Max
c
c
bbbttt | S
2
0 20 40 60 80 100 0 20 40 60 80 100
repeat times repeat times
Delete Mixed
6 x 10t Cstpnusnainttutangrohgnss
m
4x10! £
(]
3x 10! £ —-- No —A— Many
; —¥— Few —@— Max
£ 1034
2 x 10! g
2

40 60
repeat times

40 60
repeat times

0 20

Fig. 6. Evaluating the stability of running times over 32 cores.

— For Insert and Mixed, we achieve around 7x speedups using 32 work-
ers in No and Few cases, and around 2x speedups using 4 workers in
Many cases. This is because all CPU cores have to access the shared
memory through the bus, which connects memory and cores, and the
atomic CAS operations will lock the bus. Each Insert operation may
have many atomic CAS operations for spin lock and many atomic

11

80 100

read and write operations for updating labels and lists. In this case,
the bus traffic is high, which is the performance bottleneck for Insert

operations

are

operations.

— For Order, all four cases achieve almost perfect speedups
from wusing 1 to 32 workers, as Order

lock-free.

B. Guo and E. Sekerinski

— For Delete, it achieves around 4x speedups using 64 workers in four
cases. This is because, for parallel Delete operations, the worst-case,
where all operations are blocking as a chain, is almost impossible to
happen.

6.5. Evaluating the scalability

In this experiment, we measure the Weak Scaling by increasing the
total work and fixing with 32 workers . In this test of Ours, we increase
the scale of the initial order list from 10 million to 100 million and
evaluate running times with fixed 32 workers. We test three cases, No,
Few, Many, and Max, by fixing the average number of items per insert
position. For example, given an initial order list with 20 million items,
the No case has 20 million insert positions, the Few case has 2 million
positions, and the Many case has 2000 insert positions, and the Max case
only has single one insert position.

The plots in Fig. 5 depict the performance. The x-axis is the ini-
tial size of the order list, and the y-axis is the time ratio of the current
running time to the “10 million” running time. The dotted lines show
the perfect time ratio as a baseline. The beginning time ratio is one.
Obviously, we observe that for the parallel Insert, the time ratio of
Max case increases sharply, since it is reduced to sequential and has no
speedup with 32 workers, so does the Mixed case. Besides, all the other
time ratios are roughly close to linearly increasing with the scales of the
order list. This is because all parallel Insert, Delete, and Order have
best-case time complexity O(%) and on average their running times are
close to the best case.

Specifically, for Order, we can see that the time ratio is up to 20x
with a scale of 100 million in the No case. The poor scalability of the No
case workload for Order operations is due to the reduced cache local-
ity, that is, each comparison touches random pairs of nodes distributed
across the entire 10M array, which cannot fit into the L3 CPU cache
anymore and may lead to cache misses. In contrast, the Few, Many, and
Max cases concentrate accesses within fewer groups, which are more
cache-friendly and thus more efficient than the No case.

6.6. Evaluating the stability

In this test of Ours, we compare 100 testing times for the Insert, Order,
and Delete operations by using 32 workers. Each time, we randomly
choose positions and randomly insert items for the NO, Few, and Many
cases, so that the test is different. However, it is always the same for the
Max case, since there is only one position to insert all items.

The plots in Fig. 6 depict the running time by performing the exper-
iments 100 times. The x-axis is the index of repeating times, and the
y-axis is the running times (milliseconds). We observe that the perfor-
mance of Insert, Order, Delete, and Mixed remains well bounded across
all four cases. Specifically, we have two observations:

— We can see that the Max case has a wider variation than other cases
over Insert and Mixed. This is because the parallel Insert opera-
tions always have contention over shared data in memory. Such con-
tention causes the running times to fluctuate within a bounded range.

— It is true that the relabel processes of Insert operations introduce
short bursts of work. However, relabel processes are unlikely to hap-
pen since the groups are at least of size log N and the Insert opera-
tions have amortized O(1) time, the relabel cost is tightly bounded.

7. Conclusion and future work
We present a new parallel order maintenance (OM) data structure.

The parallel Insert and Delete are synchronized with locks efficiently.
Notably, the parallel Order is lock-free, and can execute highly in paral-

12

Journal of Parallel and Distributed Computing 211 (2026) 105238

lel. Experiments demonstrate significant speedups (for 64 workers) over
the sequential version on a variety of test cases.

In future work, we will attempt to reduce the synchronization over-
head, particularly for parallel Insert. Specifically, we will investigate
the lock-free version of Insert, Delete, and Order operations by using
the atomic Mult-Word Compare-and-Swap (MCAS) [19], which can sig-
nificantly simplify the lock-free implementation. Furthermore, we will
investigate insertions and deletions in batches by pre-processing the in-
serted and deleted items, which can significantly reduce the contention
for multiple workers. In addition, we intend to apply our parallel OM
data structure to a broad range of parallel algorithms.

CRediT authorship contribution statement

Bin Guo: Writing - review & editing, Writing — original draft; Emil
Sekerinski: Supervision.

Data availability
No data was used for the research described in the article.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References
[1] P. Dietz, D. Sleator, Two algorithms for maintaining order in a list, in: Proceed-

ings of the Nineteenth Annual ACM Symposium on Theory of Computing, 1987, pp.

365-372.

M.A. Bender, R. Cole, E.D. Demaine, M. Farach-Colton, J. Zito, Two simplified al-

gorithms for maintaining order in a list, in: European Symposium on Algorithms,

Springer, 2002, pp. 152-164.

R. Utterback, K. Agrawal, J.T. Fineman, L.-T.A. Lee, Provably good and practically

efficient parallel race detection for fork-join programs, in: Proceedings of the 28th

ACM Symposium on Parallelism in Algorithms and Architectures, 2016, pp. 83-94.

Y. Zhang, J.X. Yu, Y. Zhang, L. Qin, A fast order-based approach for core mainte-

nance, in: Proceedings - International Conference on Data Engineering, 2017, pp.

337-348. arXiv:1606.00200, https://doi.org/10.1109/ICDE.2017.93

B. Guo, E. Sekerinski, Simplified algorithms for order-based core maintenance,

(2022). arXiv:2201.07103

B. Guo, E. Sekerinski, Parallel order-based core maintenance in dynamic graphs,

arXiv:2210.14290 (2022).

Y. Zhang, J.X. Yu, Unboundedness and efficiency of truss maintenance in evolving

graphs, in: Proceedings of the 2019 International Conference on Management of

Data, 2019, pp. 1024-1041.

M.A. Bender, J.T. Fineman, S. Gilbert, A new approach to incremental topological

ordering, in: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SIAM, 2009, pp. 1108-1115.

A. Marchetti-Spaccamela, U. Nanni, H. Rohnert, Maintaining a topological order

under edge insertions, Inf. Process. Lett. 59 (1) (1996) 53-58.

R.C. Martin, J. Newkirk, R.S. Koss, Agile Software Development: Principles, Patterns,

and Practices, 2, Prentice Hall Upper Saddle River, NJ, 2003.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT

press, 2022.

J. Shun, Shared-Memory Parallelism Can be Simple, Fast, and Scalable, PUB7255

Association for Computing Machinery and Morgan & Claypool, 2017.

J. JéJé, An Introduction to Parallel Algorithms, Reading, MA: Addison-Wesley, 1992.

P.F. Dietz, Maintaining order in a linked list, in: Proceedings of the Fourteenth An-

nual ACM Symposium on Theory of Computing, 1982, pp. 122-127.

AK. Tsakalidis, Maintaining order in a generalized linked list, Acta Inf. 21 (1) (1984)

101-112.

S. Gilbert, J. Fineman, M. Bender, Concurrent order maintenance, Unpub-

lished (2003). https://ocw.mit.edu/courses/6-895-theory-of-parallel-systems-sma-

5509-fall-2003/b5e012c63722c74d9d6504fef3caba00_gilbert.pdf.

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, J. McDonald, Parallel Pro-

gramming in OpenMP, Morgan kaufmann, 2001.

M. Herlihy, N. Shavit, V. Luchangco, M. Spear, The Art of Multiprocessor Program-

ming, Newnes, 2020.

R. Guerraoui, A. Kogan, V.J. Marathe, 1. Zablotchi, Efficient multi-word compare

and swap, in: 34th International Symposium on Distributed Computing, 2020.

[2]

[3]

[4]

(5]
(6]

[71

(8]

[91
[10]
[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0001
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0001
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0001
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0002
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0002
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0002
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0003
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0003
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0003
http://arxiv.org/abs/1606.00200
https://doi.org/10.1109/ICDE.2017.93
https://doi.org/10.1109/ICDE.2017.93
http://arxiv.org/abs/2201.07103
http://arxiv.org/abs/2210.14290
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0007
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0007
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0007
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0008
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0008
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0008
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0009
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0009
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0010
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0010
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0011
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0011
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0012
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0012
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0013
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0014
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0014
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0015
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0015
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0016
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0016
https://ocw.mit.edu/courses/6-895-theory-of-parallel-systems-sma-5509-fall-2003/b5e012c63722c74d9d6504fef3caba00_gilbert.pdf
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0016
https://ocw.mit.edu/courses/6-895-theory-of-parallel-systems-sma-5509-fall-2003/b5e012c63722c74d9d6504fef3caba00_gilbert.pdf
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0017
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0017
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0018
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0018
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0019
http://refhub.elsevier.com/S0743-7315(26)00016-X/sbref0019

	New concurrent order maintenance data structure
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Insert
	3.2 Atomic primitives

	4 Parallel order maintenance data structure
	4.1 Data structure definition and memory management
	4.2 Parallel delete
	4.2.1 Algorithm
	4.2.2 Correctness
	4.2.3 Complexities

	4.3 Parallel insert
	4.3.1 Algorithm
	4.3.2 Correctness
	4.3.3 Complexities

	4.4 Parallel order
	4.4.1 Algorithm
	4.4.2 Correctness
	4.4.3 Complexities

	5 Implementation
	5.1 Lock implementation
	5.2 Capacity of OM

	6 Experiments
	6.1 Experiment setup
	6.2 Evaluating relabelling
	6.3 Evaluating the running time
	6.4 Evaluating the speedups
	6.5 Evaluating the scalability
	6.6 Evaluating the stability

	7 Conclusion and future work

