
New Parallel Order Maintenance Data
Structure

Paper ID: PD104

Bin Guo (binguo@trentu.ca, Trent University, ON Canada)
 Emil Sekerinski (emil@mcmaster.ca, McMaster University, ON Canada)

mailto:binguo@trentu.ca
mailto:emil@mcmaster.ca

Author Information

Parallel Order Maintenance (OM) Data Structure

• Maintain a total order of unique items in a list, denoted by 𝕆

• Three operations
• Order(x, y): if x precedes y in the order list 𝕆

• Insert(x, y): insert y after x in 𝕆

• Delete(x): delete x from 𝕆

• The naïve implementation is to use Balanced Binary Search Tree

• Dietz et al. propose the OM data structure [1,2]
• use labels to comparing

Compare The time complexities

Naïve Balance
Binary Search Tree

OM data
Structure [1,2]

Order 𝑂 log 𝑁 𝑂 1

Insert 𝑂 log 𝑁 Amortized 𝑂 1

Delete 𝑂 log 𝑁 𝑂 1

For N items in total

Examples: Order and Delete

• Labels indicate the order of vertices

• Order(a, b) by comparing labels, 0 < 232, so a is ahead b

• Delete(b) with not affect the labels

a

b c d a b c d

directed acyclic graph OM data structure with Ordered List

0 232 2 ∙ 232 3 ∙ 232

…

Initial Labels (64 bits) with interval 232
Graph
Topological
Sorting

Examples: Insert

• Insert(a, x): x is in the middle between a and a.next

• At most 32 items can Insert after a, without changing labels

• It will trigger the Relabel operation when insert

a b c d

0 2 ∙ 232

…

232 3 ∙ 232

x31 x3 x2 x1
…

230 23122921 = 2

x33

insert x1 , x2, x3, … , x31, x32

x32

20 = 1

x33

• Relabel(a): start from a, find the gap that is L(xn) – L(a) > j2 for traversing j items
• Find x25 with j = 7, so that 26 − 0 = 64 > 72 = 49

• Relabel from x31 to x26 , then insert x33 with label 4

• The amortized running time is 𝑂 log 𝑁 . Can be reduce to amortized 𝑂 1 by using groups (details in my paper)

Examples: Relabel

a b c d

0 2 ∙ 232

…

232 3 ∙ 232

x32 x3 x2 x1
…

230 23122920
x33

a x27 x26 x25 …x32 x30 x29 x28

90 18 27 36 45 54 26
x33

4

a x27 x26 x25 …x32 x30 x29 x28

200 21 22 23 24 25 26

j=7j=1 j=2 j=3 j=4 j=5 j=6

Our Contribution: Parallel OM data structure
• Parallel-Delete and Parallel-Insert

• In the double-linked list, we lock the related items

a b c d

0 2 ∙ 232

…

232 3 ∙ 232

x32 x3 x2 x1
…

230 23122920

• Both lock a and x32 when inserting x33

• Assign x33 a new label
• The relabel process is triggered, which

also need to lock related vertices

lock lock lock lock lock

delete

• We lock x1 , b and c when deleting b
• The labels are not affected

x33

Insert

Our Contribution: Parallel OM data structure (2)

• We desire lock-free Parallel-Order Operation
• The Relabel may create labels that not correctly represent the order.

• Relabel not finish, only updating x31 and x30,

• The labels are incorrect to show order

a x27 x26 x25 …x32 x31 x29 x28

90 18 22=4 23 24 25 26

a x27 x26 x25 …x32 x30 x29 x28

90 18 27 36 45 54 26
x33

4

• When Relabel finish, labels correctly show the order
• For parallel Order and Insert operations, the labels must correctly show the order at any time

j=7

j=7

Our Contribution: Parallel OM data structure (3)

• All labels can be correctly indicating the order at any time snap
• The Parallel Order is lock free

• We propose a new Relabel operation

• The Relabel with reverse order from the later item

Application: Core Maintenance

• Typically, a large portion (more
than 90%) is Order operations

• Only small portion (less than
10%) are Insert and Delete
Operations

• This is why lock-free Order is
meaningful

• It is a break-through for real
applications

Experiments with 64 workers • Insert: insert 10 million items into O.
• Order: compare its order of 10

million time.
• Delete: delete all inserted items, a

total of 10 million
• Mixed: insert 10 million items, mixed

with 100 million Order operations
(simulate in applications)

• No relabel case: insert 10 million
items into 10 million positions

• Few relabel case: insert 10 million
items into 1 million positions

• Many relabel case: insert 10 million
items into 1000 positions

• Max relabel case: insert 10 million
items into 1 positions

Conclusion

• The parallel Order operations
achieve the best speedups

• In future, we attempt to make
Insert and Delete as lock-free
• By using Muti-CAS

• Also, apply parallel OM data
structure to many other
applications
• like Ordered Set

• UML

Reference

• [1] Paul Dietz and Daniel Sleator. Two algorithms for maintaining
order in a list. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 365–372, 1987.

• [2] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-
Colton, and Jack Zito. Two simplified algorithms for maintaining order
in a list. In European Symposium on Algorithms, pages 152–164.
Springer, 2002.

	Slide 1
	Slide 2: Parallel Order Maintenance (OM) Data Structure
	Slide 3: Compare The time complexities
	Slide 4: Examples: Order and Delete
	Slide 5: Examples: Insert
	Slide 6: Examples: Relabel
	Slide 7: Our Contribution: Parallel OM data structure
	Slide 8: Our Contribution: Parallel OM data structure (2)
	Slide 9: Our Contribution: Parallel OM data structure (3)
	Slide 10: Application: Core Maintenance
	Slide 11: Experiments with 64 workers
	Slide 12: Conclusion
	Slide 13: Reference

