
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:15269–15313
https://doi.org/10.1007/s11227-022-04457-9

1 3

Efficient parallel graph trimming by arc‑consistency

Bin Guo1 · Emil Sekerinski1

Accepted: 15 March 2022 / Published online: 16 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Given a large data graph, trimming techniques can reduce the search space by
removing vertices without outgoing edges. One application is to speed up the paral-
lel decomposition of graphs into strongly connected components (SCC decompo-
sition), which is a fundamental step for analyzing graphs. We observe that graph
trimming is essentially a kind of arc-consistency problem, and AC-3, AC-4, and
AC-6 are the most relevant arc-consistency algorithms for application to graph trim-
ming. The existing parallel graph trimming methods require worst-case O(nm) time
and worst-case O(n) space for graphs with n vertices and m edges. We call these
parallel AC-3-based as they are much like the AC-3 algorithm. In this work, we
propose AC-4-based and AC-6-based trimming methods. That is, AC-4-based trim-
ming has an improved worst-case time of O(n + m) but requires worst-case space of
O(n + m) ; compared with AC-4-based trimming, AC-6-based has the same worst-
case time of O(n + m) but an improved worst-case space of O(n) . We parallelize
the AC-4-based and AC-6-based algorithms to be suitable for shared-memory multi-
core machines. The algorithms are designed to minimize synchronization overhead.
For these algorithms, we also prove the correctness and analyze time complexities
with the work-depth model. In experiments, we compare these three parallel trim-
ming algorithms over a variety of real and synthetic graphs on a multi-core machine,
where each core corresponds to a worker. Specifically, for the maximum number of
traversed edges per worker by using 16 workers, AC-3-based traverses up to 58.3
and 36.5 times more edges than AC-6-based trimming and AC-4-based trimming,
respectively. That is, AC-6-based trimming traverses much fewer edges than other
methods, which is meaningful especially for implicit graphs. In particular, for the
practical running time, AC-6-based trimming achieves high speedups over graphs
with a large portion of trimmable vertices.

Keywords Graph · Trimming · Parallel · Constraint satisfaction problem (CSP) ·
Arc-consistency (AC)

 * Bin Guo
 guob15@mcmaster.ca

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04457-9&domain=pdf

15270 B. Guo, E. Sekerinski

1 3

1 Introduction

In numerous applications, like social networks [56], pattern matching [12], commu-
nication networks [33], knowledge graphs [60], and model verification [27], data are
organized into directed graphs with vertices for objects and edges for their relation-
ships. The large size of such graphs motivates graph trimming, i.e., removing verti-
ces without outgoing edges to speed up subsequent processing, such as cycle detec-
tion [38], k-core decomposition [4], and in particular graph decomposition [29]. For
instance, for the communication network wiki-talk [33] with 2.4 million vertices,
surprisingly 94.5% of the vertices can be trimmed, which greatly reduces the graph
size for subsequent processing.

One issue is that trimming such unqualified vertices may cause other vertices to
become useless. Naively repeating the trimming process may lead to a quadratic
worst-case time complexity. Thus, linear time bounded graph trimming methods are
desired. Additionally, the availability of multi-core processors motivates efficient
parallelization of such graph trimming methods. Here, a worker is a working process
corresponding to a physical core for a multi-core processor.

To the best of our knowledge, there exists little work on parallel trimming over
large data graphs, except for [11, 29, 31, 41, 53]. In these studies, the graph trim-
ming is adopted to quickly remove the vertices without out-going edges so that can
speed up the strongly connected component (SCC) decomposition. In [41], McLen-
don et al. first apply a linear time graph trimming method to remove size-1 SCCs;
however, a parallel version is not provided. In [29], Hong et al. propose a quad-
ratic time graph trimming technique by “peeling” size-1 and size-2 SCCs, i.e., SCCs
with only 1 or 2 vertices. The “peeling” step is straightforward: (1) all vertices are
checked in parallel and the trimmable ones are removed, which may cause other
vertices to become trimmable; (2) this process is repeated until no vertex can be
removed from the graph. The advantage of this graph trimming technique is that
it can be highly parallelized without difficulties. However, it has a quadratic worst-
case time complexity of O(nm∕P + �) , where n is the number of vertices, m is the
number of edges, P is the number of workers, and � is the depth of the algorithm
(explained in the next section). This parallel trimming technique is widely used in
later SCC decomposition methods [11, 31, 53].

In this work, we apply the well-known arc-consistency (AC) algorithms to graph
trimming. Based on that, we not only classify existing graph trimming algorithms
but also propose a new graph trimming algorithm that improves the time and space
complexities by an order of magnitude. Before discussing these contributions,
we first show an application of graph trimming, the SCC decomposition in large
graphs [11, 29, 31, 41, 53].

1.1 An application of graph trimming

Detecting the strongly connected components in directed graphs, the so-called SCC
decomposition, is one of the fundamental analysis steps in many applications such

15271

1 3

Efficient parallel graph trimming by arc-consistency

as social networks [33], communication networks [55], knowledge networks [2],
and model checking graphs [27]. Given a directed graph G = (V ,E) , a strongly con-
nected component of G is a maximal set of vertices C ⊆ V such that every two verti-
ces u and v in C are reachable from each other. The early SCC algorithms are based
on depth-first search (DFS) [15, 57]. However, lexicographical-first DFS is P-com-
plete and even the random DFS is hard to parallelize [1, 48]. The breadth-first search
(BFS)-based forward–backward (FW-BW) algorithm has been proposed. Unlike
DFS, BFS can be parallelized without difficulty. Starting from a selected pivot ver-
tex, FW-BW performs a forward BFS to identify the vertex set FW that the pivot can
reach, followed by a backward BFS to identify the set BW that can reach the pivot.
The intersection between FW and BW is an SCC that contains the pivot [21]. In the
worst case, each vertex can be selected as a pivot to travel the whole graph in O(m) ,
which yields a quadratic time complexity of O(mn) [21]. In [14, 22], the worst-case
time complexity is improved to O(m log n) by using a divide-and-conquer approach.

Interestingly, real-world graphs demonstrate SCC features that follow the power-
law property [29], that is, several large SCCs take the majority of vertices and the
rest of them are trivial SCCs. More importantly, most of the trivial SCCs are size-1
SCCs. The key observation is that a size-1 SCC is easy to identify: It has zero
incoming edges or zero outgoing edges. Therefore, graph trimming can be used to
remove such size-1 SCCs in parallel with less computational effort than FW-BW
and thus in practice can speed up FW-BW. Analogously to size-1 SCCs, size-2 [29]
and size-3 [31] SCCs also can be trimmed but with more computational effort.

Figure 1 illustrates the FW-BW algorithm with graph trimming. Figure 1a shows
that there are altogether two large SCCs, SCC1 and SCC2 (whose sizes are greatly
larger than 3) and the other trivial SCCs. From Fig. 1a, it is easy to see that vertices
v1 to v7 are size-1 SCCs, vertices v8 and v9 compose one size-2 SCC, and vertices v10
to v12 compose one size-3 SCC. In Fig. 1b, we first try to trim all size-1 SCCs: (1) in
the first repetition, vertices v5 and v2 are removed since they have no outgoing edge,
which causes vertex v4 to have no outgoing edges; (2) in the second repetition, ver-
tex v4 is removed, which causes vertex v3 to have no outgoing edges; (3) in the third
repetition, vertex v3 is removed, which causes vertex v1 to have no outgoing edges;
(4) in the final repetition, vertex v1 is removed. Similarly, in Fig. 1c, size-2 and size-3
SCCs can also be removed. Note that vertices v6 and v7 , located between two large
SCCs, are size-1 SCCs, but they cannot be directly trimmed. After the first round of
graph trimming, the FW-BW algorithm can identify two large SCCs, SCC1 and SCC2 ,

(a) (c)(b)

Fig. 1 a The graph that be use graph trimming to remove size-1, size-2 and size-3 SCCs; b is the graph
that after trimming the size-1 SCCs; c the graph after trimming both size-1 and size-2 SCCs

15272 B. Guo, E. Sekerinski

1 3

which also can be deleted from the graph. After removing the two large SCCs, the
second round of trimming can remove vertices v6 and v7 with two iterations.

The naive trimming method as used in FW-BW [22] has a quadratic time com-
plexity of O(mn) in the worst case. The drawback of such trimming is that it sacri-
fices the better worst-case time complexity of FW-BW, O(m log n) [22]. From our
experiments, we noticed that the running time of such trimming will dramatically
increase with the number of peeling steps � because of the increasing number of
repetitions. This is why FW-BW with trimming as in [29] is only efficient for small-
word graphs. The small-world property states that the diameters (greatest shortest
path distance between any pair of vertices) of graphs are very small even for very
large graph instances [59], which always implies a small number of peeling steps.
The focus of this paper is to improve traditional graph trimming so that algorithms
based on FW-BW with trimming [11, 29, 31, 41, 53] can be more efficient, espe-
cially for non-small-world graphs.

For instance, in [31], the parallel SCC decomposition algorithm ISPAN is pro-
posed. It combines the power of graph trimming and FW-BW, both of which can be
efficiently parallelized. In particular, graph trimming is used at two places; before
large SCC detection, trimming is used to remove the size-1 SCCs; after the large
SCC is detected, trimming is again used to remove size-1, size-2, and size-3 SCCs.
The evaluation uses 56 workers over 16 graphs and shows that ISPAN achieves a
significant speedup of 171–6591 times over the sequential DFS-based Tarjan’s algo-
rithm [15] and of 85–1475 times over the parallel DFS-based UFSCC algorithm [8].

1.2 The new method

Essentially, graph trimming is a kind of constrain satisfaction problem (CSP), that
is, a set of vertices must satisfy a number of constraints or limitations, e.g., each
vertex needs at least one outgoing edge or it will be removed as a size-1 SCC. Many
filtering algorithms [19] have been proposed to remove values that obviously do not
belong to the solution of a CSP and thus reduce the search space. The closest related
filtering algorithms to graph trimming are Arc-Consistency (AC) algorithms for
binary CSPs, in particular, AC-3 [40], AC-4 [45], and AC-6 [23].

Table 1 summarizes the time and space complexities of these three algorithms.
AC-6 has the best worst-case time and space complexities. AC-4 and AC-6 have
the same time complexity. However, in reality, AC-3 and AC-6 perform sometimes

Table 1 The worst-case time and space complexities of three arc-consistency algorithms, where e is the
number of arcs, k is the number of variables, d is the size of the largest variable’s domain

Algorithm Time (O) Space (O)

AC-3 ed3 e + kd

AC-4 ed2 ed2

AC-6 ed2 ed

15273

1 3

Efficient parallel graph trimming by arc-consistency

better than AC-4 due to AC-4 always running close to its worst-case time. The
details are explained in the next section.

The key observation is that the graph trimming technique in [41] is like AC-4
(AC-4-based). Also, the other widely used graph trimming technique in [11, 29, 31,
53] is like AC-3 (AC-3-based). Stimulated by AC-6, we design a novel graph trim-
ming algorithm (AC-6-based). Compared to AC-3-based and AC-4-based trimming,
our new AC-6-based trimming is more complicated and not easy to parallelize. To
the best of our knowledge, there exists little work on parallel AC algorithms [13,
32]. In this work, we design efficient sequential and parallel versions of AC-6-based
trimming for a multi-threaded shared memory architecture.

Table 2 summarizes the complexities of different parallel graph trimming algo-
rithms in the work-depth model, where the work is the number of operations used by
the algorithm and the depth is the length of the longest sequential dependence in the
computation. We can see that all three trimming algorithms have the different paral-
lel depth, and AC-3-based trimming has a smallest depth. AC-3-based trimming has
larger worst-case work and time complexities than the other two algorithms. The
AC-6-based and AC-4-based algorithms have the same worst-case work and time
complexities. We show that AC-6-based trimming traverses fewer edges and uses
less space. For example, over all tested graphs in our first experiments, AC-6-based
trimming reduces the number of traversed edges 3.3–192.5 times compared with
AC-4-based trimming and 1.5–44 times compared with AC-3-based trimming.

To parallelize the AC-4-based and AC-6-based algorithms, the conventional way
is with mutual exclusion by using Lock and Unlock operations that guarantee
exclusive access to data structures shared by multiple workers. In this work, how-
ever, we use atomic primitives to minimize the synchronization overhead.

1.3 On‑the‑fly property

The on-the-fly property [8] means an algorithm can run on an implicit graph defined
as G = (v0, ����) , where v0 is the initial vertex and ����(v) is a function that returns
all of the successors of vertex v. One drawback of the FW-BW method is that the
backward search requires reverse edges, which means all edges have to be loaded
into memory; storing the graph as an adjacent list with only outgoing edges is not

Table 2 The worst-case work, depth, and space complexities of parallel graph trimming algorithms,
where n is the number of vertices, m is the number of edges, P is the number of total workers, � is
the number of peeling steps, Degout is the maximal out-degree for all vertices, Deg

in
 is the maximal in-

degree for all vertices, |Qp| is the upper-bound size of waiting sets among P workers such that sometimes
|Q

p
| ≥ �

Trimming On-The-Fly Worst-case (O)

Work Depth Space

AC-3-based ✓ �(n + m) �Degout n
AC-4-based ✗ n + m |Qp|DeginDegout n + m

AC-6-based ✓ n + m |Qp|Degin
2 n

15274 B. Guo, E. Sekerinski

1 3

sufficient. The on-the-fly property is necessary when handling large graphs that
occur in, e.g., verification [42], as it may allow the algorithm to terminate early after
processing only a fraction of the graph without needing memory space for load-
ing the whole graph. It also benefits algorithms that rely on implicit graphs [47], in
which the edges are calculated online by function ����(v).

The on-the-fly properties of three graph trimming algorithms are summarized in
Table 2. It is easy to see that the AC-4-based trimming cannot run on-the-fly as
it requires reverse edges and thus the whole graph must be loaded into the mem-
ory. AC-3-based and AC-6-based trimming can run on-the-fly as they only rely
on the post of vertex v when traversing each vertex v ∈ V and their space usage
is bounded by O(n) . However, compared with AC-3-based trimming, AC-6-based
trimming needs much less work. Note that on implicit graphs, all the edges are com-
puted online by the function ����(v) , which typically costs more running time than
directly loading edges from memory like with explicit graphs. The proposed AC-
6-based trimming traverses fewer edges than AC-3-based trimming and thus per-
forms better on implicit graphs.

1.4 Contribution

The contributions of this work are summarized below:

• We provide a formal definition of graph trimming based on the constraint satis-
faction problem (CSP) and arc-consistency (AC). Following three well-known
arc-consistency algorithms, that is, AC-3, AC-4, and AC-6, we categorize the
existing graph trimming algorithms as AC-3-based [11, 29, 31, 53] and AC-
4-based algorithms [41].

• We revisit the existing parallel AC-3-based algorithm. We give the detailed steps
of the AC-4-based algorithm and parallelize it using atomic primitives.

• We propose a novel AC-6-based algorithm that has optimized time and space
complexities. We further parallelize the AC-6-based algorithm using atomic
primitives. These are the main contributions of this work.

• For all three graph trimming algorithms, we formally discuss their correctness,
time complexity, and space complexity. The time complexities for parallel algo-
rithms are analyzed in the work-depth model.

• Finally, for all three parallel trimming algorithms, our experiments compare the
number of traversed edges and practical running time with 1 to 16 workers over a
variety of real and synthetic graphs.

This paper is organized as follows. Section 2 provides the background. Section 3
discusses the relation between graph trimming and Arc Consistency. Section 4 revis-
its the AC-3-based graph trimming algorithm. Section 5 provides the AC-4-based
graph trimming algorithm. Section 6 proposes the AC-6-based graph trimming
algorithm. The related work is discussed in Sect. 7. In Sect. 8, we discuss the imple-
mentations. In Sect. 9, we provide the experimental evaluation over a variety of data

15275

1 3

Efficient parallel graph trimming by arc-consistency

graphs. Section 10 concludes three trimming algorithms and discusses the future
work.

2 Preliminaries

Given a directed graph G = (V ,E) , let n = |V| and m = |E| be the numbers of ver-
tices and edges, respectively. A vertex v in graph G is also denoted as v(G). As
opposed to an undirected graph, (v,w) ∈ E does not imply that (w, v) ∈ E . The
post of vertex v in G is the set of all the successors (outgoing edges) of v, defined
by v.post = {w ∣ (v,w) ∈ E} ; when the context is clear, we use v.post instead of
v(G).post . The pre of vertex v is the set of all the predecessors (ingoing edges) of v,
defined by v.pre = {w ∣ (w, v) ∈ E} . For each vertex v ∈ V , its out-degree is the
number of successors |v.post| and its in-degree is the number of predecessors |v.pre| .
To analyze the time complexity of trimming algorithms, we use Degout and Degin
to denote the maximum out-degree and in-degree among all vertices in a graph G,
respectively.

A transposed graph GT = (V ,ET) is equivalent to the graph G = (V ,E)
with all its edges reversed, ET = {(w, v) ∣ (v,w) ∈ E} . It is easy to see that
v(G).post = v(GT).pre and v(G).pre = v(GT).post for each v ∈ V . A transposed
graph GT can be generated in order to efficiently obtain v(G).pre without traversing
the whole original graph G.

Definition 1 (Trimmed Graph) Given a directed graph G = (V ,E) , the trimmed
graph G� = (V �,E�) with V ′ ⊆ V and E′ ⊆ E is a maximal subgraph of G, where each
vertex has at least one outgoing edge, formally ∀v ∈ V � ∶ v.post ≠ �.

This work focuses on the graph trimming algorithms that can obtain trimmed
graphs according to Definition 1. Without changing the original graph G = (V ,E) ,
each vertex v ∈ V is assigned a status, denoted as v.status , with values LIVE and
DEAD, which indicates if vertex v is located in the graph (live) or removed (dead),
respectively.

2.1 Graph storage

In this work, explicit graphs and implicit graphs are discussed. Explicit graphs are
typically stored in the compressed sparse row (CSR) format [28, 29]. This for-
mat uses two arrays to represent the graph: an O(n)-sized array stores an index to
the beginning of each vertex’s adjacency list and an O(m)-sized array stores each
vertex’s adjacency list. The CSR representation is compact, memory bandwidth-
friendly, and thus suitable for efficient graph traversals. It is easy to see that succes-
sors of each vertex v ∈ V are ordered and thus can be traversed one by one in order.

On modern computers, registers can move data around in single clock cycles.
However, registers are very expensive. The dynamic random access memory is very
cheap but takes hundreds of cycles after a request to receive the data. To bridge

15276 B. Guo, E. Sekerinski

1 3

this gap between them are the cache memories, named L1, L2, L3 in decreasing
speed and cost. If the data is stored in memory sequentially, the CPU can prefetch
the data into the cache for fast accessing, which is cache-friendly. For a graph stored
in CSR format, we can see that sequentially traversing all edges is cache-friendly as
the cache hit rate is high, but randomly traversing all edges is not cache-friendly as
the cache hit rate is low.

Implicit graphs are defined as G = (v0, ����) assuming that all the vertices in G
are reachable from vertex v0 , where v0 is the initial vertex and ����(v) is a function
that returns all of the successors of vertex v, that is, ����(v) = v.post . One kind of
implicit graphs are model checking graphs [47] such that for each vertex v in a graph
G, all the edges are calculated online by ����(v) . Another kind of implicit graphs
are external graphs such that all the edges are stored on disks sequentially; once
a vertex v is traversed, the edges of v are loaded into memory. The advantage of
implicit graphs is that they allow handling large graphs with limited memory usage.
However, much running time is spent on generating the edges via ����(v) . If an
algorithm can run on implicit graphs without loading the whole graphs into mem-
ory, we say this algorithm has the on-the-fly property

2.2 Constraint satisfaction problem

A constraint satisfaction problem (CSP) [19, 51] can be defined as a triple
P = (X,D,C) , where X = {X1,… ,Xn} is a set of n variables, D = {D(X1),… ,D(Xn)}
is the set of n domains such that D(Xi) is a set of possible values of variable Xi , and
C is a set of constraints that specify allowable combinations of values. A solution of
a constraint set C is an instantiation of the variables such that all constraints are sat-
isfied. Here, we restrict to binary constraints Cij between pairs (Xi,Xj) of variables,
i.e., C = {Cij ∣ i, j ∈ 1… n}.

2.3 Arc‑consistency

A value vi ∈ Di is binary consistent with a constraint Cij if there exists vj ∈ Dj such
that (vi, vj) satisfies Cij . Then vj ∈ Dj is called a support of vi ∈ Dj over Cij . A value
vi ∈ Di is viable if it has supports for every Dj such that each Cij ∈ C is satisfied. A
variable in a CSP is arc-consistent (AC) if every value in its domain satisfies each
binary constraint Cij ∈ C.

Several AC algorithms have been proposed for removing values that are not
viable. AC-1 [39] revisits all the binary arcs that have to be revisited once some
domains are reduced. Improving on AC-1, algorithm AC-2 [39] only revisits the
arcs that are affected by reducing some domains. Algorithm AC-3 [39, 40] general-
izes and simplifies AC-2.

Algorithm 1 shows the detailed steps of AC-3. Initially, the global set Q includes
all constraint arcs Cij ∈ C (line 1). Each constraint arc Cij is picked and then removed
from the set Q (line 3), and each pair of values in the domains D(Xi) and D(Xj)
are checked by the procedure Revise (line 4), that is, for each value vi ∈ D(Xi) , if
D(Xj) does not contain a value vj such that (vi, vj) satisfies the constraint Cij , the value

15277

1 3

Efficient parallel graph trimming by arc-consistency

vi is repeatedly removed from D(Xi) (lines 7–13). If D(Xi) is changed, the associated
constraints Cij are placed into Q again (lines 5 and 6). This process is repeated until
the set Q becomes empty (line 2). It is easy to see that AC-3 is not efficient since the
revision of any domain will force neighbor constraints to be revisited again.

AC-4 [45] improves the worst-case time complexity of AC-3 by using auxiliary
data structures, supports and counters, but its average running time is close to the
worst-case time complexity. However, AC-3 has better average running time and
space usage than AC-4 and thus AC-3 is always preferred to AC-4 [51] in practice.
Algorithm AC-6 [5] combines AC-3 and AC-4. It only records one support for each
value, unlike AC-4 which records all supports, since a single support is enough to
prove that a value is viable. Because of this, AC-6 has the same worst-case time
complexity as AC-4 but averagely performs much better than AC-4 in many applica-
tions. Further, AC-6 needs less space than AC-4 since for each value only a single
support is recorded. The corresponding time, work, and space complexities in the
worst case are summarized in Table 1.

2.4 Parallel complexity analysis

We assume parallel programs run on shared-memory multi-core machines, where
different cores access a shared global memory simultaneously. Shared-memory par-
allelism has many advantages, but writing correct, efficient, and scalable shared-
memory multi-core programs is difficult. In this paper, the parallel graph trimming
algorithms are designed for nested fork-join parallelism, in which a fork specifies
workers that can execute in parallel, and a join specifies a synchronization point
among multiple workers. In practice, our parallel algorithms can be implemented by
OpenMP [16].

15278 B. Guo, E. Sekerinski

1 3

We analyze our parallel algorithms in the work-depth model [15, 52], where the
work, denoted as W , is the total number of operations that are used by the algorithm
and the depth, denoted as D , is the longest length of sequential operations [30]. This
model is particularly convenient for analyzing nested parallel algorithms. Assuming
that a scheduler dynamically load balances a parallel computation across all avail-
able workers, the expected running time is O(W∕P +D) when using P workers. For
the multi-core architecture, a worker is a working process corresponding to a physi-
cal core. In particular, for sequential algorithms, the work and the depth terms are
equivalent. A parallel algorithm is work-efficient if its work is asymptotically equal
to the work of the fastest sequential algorithm for the same problem [6].

Definition 2 (Number of Peeling Steps �) Given a directed graph G = (V ,E) , integer
� is defined as the number of peeling steps: in the peeling process, a step removes
all vertices with zero out-degrees and thus decrements the out-degrees of adjacent
neighbors. Neighbors whose out-degrees becomes zero must be removed in the next
step. This is repeated until no vertices have an out-degree of zero.

To analyze the depth of our trimming algorithms, the number of peeling step � is
introduced in Definition 2, which is analogous to the peeling-complexity proposed
to analyze the depth of parallel k-core decomposition algorithms [18]. Essentially, �
is a property of graphs, which indicates the longest chain size of trimmable vertices.
It is easy to see that � can be as large as n in the worst case, e.g., in a chain graph.
However, � is significantly smaller than n in practice. For example, for the graphs in
our experiments, � ranges from 3 to 11, 686, which is small compared to their mil-
lions of vertices.

2.5 Atomic primitives

All algorithms are implemented for shared-memory parallel machines; that is, mul-
tiple workers access the same memory [52]. The conventional way is with mutual
exclusion by using Lock and Unlock operations that guarantee exclusive access to
data structures shared by multiple workers. Compared with using locks, a implemen-
tation by using atomic primitives has much less synchronization overhead and the
unexpected delay while workers are within critical sections can be highly reduced.
The compare&swap (CAS) and fetch&add (FAA) operations are universal atomic
primitives that are supported on the majority of current parallel architectures [43,
44, 58].

As shown in Algorithm 2, the CAS atomic primitive takes three arguments, a var-
iable (location) x, an old value a, and a new value b. It checks the value of the varia-
ble x, and if it equals to the old value a, it updates the pointer to the new value b and
then returns true; otherwise, it returns false to indicate that the updating fails. Here,
we use a pair of angular brackets, ⟨…⟩ , to indicate that the operations in between are
executed atomically.

15279

1 3

Efficient parallel graph trimming by arc-consistency

The FAA atomic primitive is shown in Algorithm 3. The old value of x is fetched
and added by a. The new value of x is returned. For instance, there is a race condi-
tion when one worker is executing }}x ∶= x + aε and the other worker is executing
}}x ∶= x + bε concurrently. Using FAA can efficiently get the correct result without
workers affecting each other.

3 Graph trimming as arc consistency

Intuitively, we can regard graph trimming as a graph with a constraint that each
vertex has at least one outgoing edge. Based on this observation, we define graph
trimming as an arc-consistency problem with one single variable, viz., the set of all
vertices, and a single binary constraint, viz., each vertex must have at least one out-
going edge as one support. Then, trimming a graph means determining the domain
of available vertices.

More formally, given a directed graph G = (V ,E) , graph trimming can be
defined as an arc-consistency problem (X, D, C) with variables X = {X1} , domains
D = {D(X1)} and constraint C = {C11} . Here, we assume that X1 = V and C11 = E ,
that is, each vertex v1 ∈ D(V) must has at least one support vertex v�

1
∈ D(V) in the

same domain, where (v1, v�1) ∈ E.
Consequently, three important AC algorithms, AC-3, AC-4, and AC-6, can be

applied to graph trimming. Interestingly, we find that one widely used graph trim-
ming method [11, 29, 31, 53] is analogous to AC-3 (we call it AC-3-based). The
other [41] is analogous to AC-4 (we call it AC-4 based); however, the detailed
steps are not discussed, and a parallel version is not provided. As a contribution, we
design a novel graph trimming algorithm based on AC-6 (we call it AC-6-based).

In Table 3, we summarize the notations that will be frequently used when dis-
cussing the graph trimming algorithms.

4 AC‑3‑based graph trimming

In the graph trimming problem, there exists only a single variable and a single
constraint. Therefore, AC-3, as shown in Algorithm 1, can be simplified when
applied to graph trimming. The idea is straightforward: (1) for all vertices in a
graph, the vertices with zero out-degrees are removed; (2) this process is repeated

15280 B. Guo, E. Sekerinski

1 3

until the graph does not change. This naive trimming method is widely used [11,
29, 31, 53] for quickly removing the size-1 SCCs, but the correctness and com-
plexities are not formally discussed. In this section, we revisit the existing parallel
AC-3-based algorithm for graph trimming and formally discuss the correctness
and complexities. The sequential AC-3-based algorithm is immediate and not dis-
cussed further.

4.1 The parallel AC‑3‑based algorithm

Algorithm 4 shows the detailed steps of the parallel AC-3-based algorithm for
graph trimming. The procedure �������������(v) (lines 11–14) returns TRUE if
vertex v has at least one available outgoing edge and FALSE otherwise. All ver-
tices in V are initialized as ���� . After partitioning V into V1 …VP , we have P
workers execute the procedure ����p(Vp) in parallel (lines 4 and 5). The main
procedure ����p(Vp) (lines 7–10) removes the vertices in Vp that have an out-
degree of zero. The removing process repeats until the graph does not change
(lines 2–6). One advantage of this algorithm is that it is easy to parallelized: Each
copy of procedure ����p(Vp) for a worker p (line 5) can run in parallel with only
change as the sole shared variable.

Table 3 The notations that frequent used when discussing the graph trimming algorithms

Notation Description

G = (V ,E) A directed graph with n vertices and m edges
GT = (V ,ET) A transposed graph of G = (V ,E)

u(G).degin The in-degree of u in G
u(G).degout The out-degree of u in G
u(G).post The successors of u in G
u(G).pre The predecessor of u in G
u(G).S The supporting set used by AC-6-Trimming
u(G).status The status (LIVE or DEAD) of u in G
Degin The maximal in-degree among all vertices in G
Degout The maximal out-degree among all vertices in G
� The number of peeling steps in G
Q The waiting set used by AC-4-Trimming and AC-6-Trimming
P The total number of workers
Qp A private waiting set used by workers p
|Qp| The upper-bound size of waiting sets among P workers

15281

1 3

Efficient parallel graph trimming by arc-consistency

For the specific implementations in [11, 29, 31], there are two strategies to
improve the AC-3-based algorithm for graph trimming.

• If the transposed graph GT is loaded in memory, another constraint can be
considered, that each vertex v ∈ V must have at least one available incoming
edge. That means the in-degree also be checked (line 9). In this case, more
size-1 SCCs can be quickly trimmed. The problem is that the transposed graph
is required, which costs O(n + m) memory space.

• The number of repetitions can be limited to a constant number like 3 or the rep-
etitions stop when the number of removed vertices is less than a threshold like
100 (line 6). The problem is that some of the trimmable vertices may not be
removed. This strategy is sometimes effective at reducing the computational time
but sometimes not, since the worst-case time complexity is not improved.

Correctness For the correctness, trimming has to be sound and complete. Sound-
ness means that all removed vertices, which are assigned a status of DEAD, must
have no outgoing edges or only edges to removed vertices:

Completeness means that all vertices that have no outgoing edges or have only out-
going edges to removed vertices are removed:

The algorithm has to ensure both soundness and completeness for all vertices in the
graph:

(1)
sound(V) ≡ ∀v ∈ V ∶ v.status = 𝙳𝙴𝙰𝙳 ⟹

(∀w ∈ v.post ∶ w.status = 𝙳𝙴𝙰𝙳)

(2)complete(V) ≡ ∀v ∈ V ∶ (∀w ∈ v.post ∶ w.status = 𝙳𝙴𝙰𝙳) ⟹

v.status = 𝙳𝙴𝙰𝙳

15282 B. Guo, E. Sekerinski

1 3

which is equivalent to:

For arguing about the correctness of for-loops, we use following rule: consider the
loop ��� x ∈ X �� S and let P(X�) be a predicate. If (1) initially P(�) holds and (2)
under precondition P(X�) the body S establishes postcondition P(X� ∪ {x}) for any
X′ ⊂ X and x ∈ X ⧵ X� , then finally P(X) holds; X′ is the set of visited elements and
P(X�) is the loop invariant.

Theorem 1 (Soundness) For any G = (V ,E) Algorithm 4 terminates with sound(V).

Proof The invariant of the for-loop of ����p (lines 8-10) is sound(V �) : initially that
holds as the universal quantification in sound(V �) is empty. The invariant is preserved
as v.status is only set to DEAD if the status of all w ∈ v.post is DEAD (lines 9 and 10).
We use the fact that �������������(v) returns (∀w ∈ v.post ∶ w.status = ����) .
The postcondition of ����p(Vp) is therefore sound(Vp) . The postcondition (line 5) is
then sound(V1) ∧⋯ ∧ sound(VP) , which is equivalent to sound(V). Thus sound(V) is
the invariant of the repeat-until loop (lines 2–6) and therefore holds on termination.
 ◻

Theorem 2 (Completeness) For any G = (V ,E) Algorithm 4 terminates with
complete(V).

Proof The invariant of the for-loop of ����p (lines 8-10) is
¬change ⟹ complete(V �) , where V ′ is the set of visited vertices. If change is
���� , the invariant is obviously preserved as change is not set to ����� in this or
any other parallel copy of ����p . Suppose change is ����� and complete(V �) holds.
For v ∈ V ⧵ V � that remains ���� , the procedure ZeroOutDegree(v) (line 9),
which computes (∀w ∈ v.post ∶ w.status = ����) , must return false. Since setting
v.status to ���� may invalidate complete(V � ∪ {v}) for this or some other parallel
copy of ����p , variable change is set to TRUE, which re-establishes the invariant for
this and all other parallel copies of ����p . ◻

Complexities The complexity of parallel AC-3-based graph trimming has been
discussed in existing work [11, 29, 31, 53], but not with the work-depth model.
We adopt the work-depth model to analyze the time complexity.

Theorem 3 Algorithm 4 requires O(�(n + m)) expected work, O(�Degout) depth, and
thus O(�(n + m)∕P + �Degout) time complexity.

Proof For the inner for-loop (lines 8–10), checking the out-degree of each vertex
v ∈ V requires O(n + m) work in the worst case since all edges may need to be tra-
versed in case of some vertices are removed. For the outer repeat-loop (lines 2–6),

(3)sound(V) ∧ complete(V)

(4)∀v ∈ V ∶ v.status = ���� ≡ (∀w ∈ v.post ∶ w.status = ����)

15283

1 3

Efficient parallel graph trimming by arc-consistency

all vertices must be checked again once at least one vertex is removed. The repeti-
tion is carried out � times. Therefore, the expected work is O(�(n + m)).

We analyze the working depth. For the procedure Trimp , the inner for-loop
(lines 12 and 13) in procedure ZeroOutDegree run in sequential with depth
O(Degout) . The repetition (lines 2–6) is carried out � times. Therefore, the theo-
retical working depth is O(�Degout) , and thus the theoretical time complexity is
O(�(n + m)∕P + �Degout) . ◻

Theorem 4 The space complexity of Algorithm 4 is O(n).

Proof Each vertex v ∈ V requires status in memory to record if vertex v is LIVE or
DEAD. Besides status , no other auxiliary data structures are utilized. Therefore, the
space complexity is O(n) . ◻

5 AC‑4‑based graph trimming

AC-4 improves the worst-case time complexity of AC-3 by using auxiliary data
structures, supports and counters. Specifically, for each value in its domain, its sup-
ports are recorded, and its total number of supports is recorded with a counter. When
removing one value, the corresponding counters located by supports are decreased
by one. The values whose counters are reduced to zero must be removed, which may
cause other values to be removed. In a word, the supports and counters are used for
efficient propagation after unqualified values are removed.

The AC-4 algorithm can be applied to graph trimming, which we call AC-4-based
trimming. For a directed graph G = (V ,E) , the supports can be simplified as the
transposed graph GT = (V ,ET) , and the counters can be implemented by out-degree
counters for all vertices v ∈ V , denoted as v.degout . AC-4-based graph trimming is
used in [41] for quickly removing size-1 SCCs to speed up SCC decomposition;
nevertheless, the details of this algorithm are not discussed, and its parallel version
is not given. In this section, we provide both sequential and parallel AC-4-based
algorithms.

5.1 The sequential AC‑4‑based algorithm

Algorithm 5 shows the detailed steps of the sequential AC-4-based algorithm.
Compared to the AC-3-based algorithm, there are two new data structures: (1) the
transposed graph GT = (V ,ET) is required for accessing the predecessors of a ver-
tex v ∈ V (line 6); (2) a waiting set Q is required for propagation when processing
removed vertices (line 3). The procedure DoDegree(v, Q) (lines 9–11) removes
the vertex v and puts it into Q for propagation if v is LIVE and its out-degree
counter v.degout is zero. That means all vertices in the waiting set Q are dead.

Now we explain Algorithm 5. Initially, for all vertices, their status and out-
degree counters are correctly initialized (line 1). For each vertex v ∈ V , the out-
degree counter is checked by calling procedure DoDegree(v, Q) (line 3). The

15284 B. Guo, E. Sekerinski

1 3

removed vertices are added into the wait set Q and then propagated to update the
out-degree counters of other vertices (lines 4–8). That is, for each vertex w ∈ Q ,
all its predecessors’ out-degree counters are off by 1 and then checked by the
procedure DoDegree(v, Q) (lines 6–8). During this process, new vertices may
be removed and added into the waiting set Q so that the algorithm does not termi-
nate until Q becomes empty (line 4).

Correctness We show soundness and completeness together.

Theorem 5 (Soundness and Completeness) For any G = (V ,E) Algorithm 5 termi-
nates with sound(V) and complete(V).

Proof Let V ′ be the set of vertices visited by the outer for-loop (lines 2–8). The
invariant of the outer for-loop (lines 2–8) is that all vertices are sound, all visited
vertices are complete, and that for each vertex v ∈ V � the counter v.degout is the
number of live vertices of outgoing edges:

The invariant holds initially as setting all vertices to LIVE makes them sound and V ′
is initially empty.

The invariant of the while-loop (lines 4–8) is that all states are sound, but setting
a vertex to DEAD may lead to its predecessors to be incomplete; also, all vertices in
Q have been set to DEAD and all v′.degout are off by one where v′ are all vertices with
a successor in Q,

sound(V) ∧ complete(V �) ∧ (∀v ∈ V ∶ v.degout = |{w ∈ v.post ∣ w.status = ����}|)

sound(V) ∧ complete(V � ⧵ Q.pre) ∧ (∀v ∈ Q ∶ v.status = ����)

∧ (∀v ∈ V ∶ v.degout = |{u ∈ v.post ∣ u.status = ���� ∨ u ∈ Q}|)

15285

1 3

Efficient parallel graph trimming by arc-consistency

where Q.pre = (∪ q ∈ Q ∶ q.pre) . Since the while-loop terminates only when Q = � ,
it follows that the invariant of the outer for-loop is preserved. We now argue that the
while-loop preserves this invariant:

• sound(V) is preserved as v ∈ V is set to DEAD only if v.degout = 0 , which implies
that there cannot be LIVE vertices in v.post.

• complete(V � ⧵ Q.pre)) is preserved as v ∈ V � ⧵ Q.pre is completed vertices and v is
indeed set to DEAD if v.degout = 0 , which implies that there cannot be LIVE verti-
ces in v.post.

• ∀v ∈ Q ∶ v.status = ���� is preserved as v is added to Q only after v is set to
DEAD.

• ∀v ∈ V ∶ v.degout = |{u ∈ v.post ∣ u.status = ���� ∨ u ∈ Q}| is preserved as
v.degout is initialized as the number of available out-going edges and decremented
only when removed successors propagated.

At termination of outer for-loop (lines 2–8), we get Q = � and V � = V . The postcondi-
tion of outer for-loop is sound(V) ∧ complete(V) . ◻

Complexities

Theorem 6 The worst-case time complexity of Algorithm 5 is O(n + m).

Proof The out-degree counter v.degout for all vertices can be initially calculated
within O(n + m) time (line 1) as each edge is traversed once. Each vertex v ∈ V can
be removed and then added into the waiting set Q at most once (lines 10 and 11);
each reversed edge in v(GT).post is traversed at most once (lines 6 - 8). In this case,
in lines 2–8, we get a running time of O(n + m) . Therefore, the total worst-case run-
ning time is O(n + m) . ◻

Theorem 7 The space complexity of Algorithm 5 is O(n + m).

Proof In line 7, the transposed graph GT = (V ,ET) is used. In this case, in order to
generate GT , the whole graph G = (V ,E) must be stored in memory, which requires
O(n + m) space. For all vertices v ∈ V , storing v.degout and v.status uses O(n) space.
Therefore, the total used space is O(n + m) . ◻

5.2 The parallel AC‑4‑based algorithm

Algorithm 6 shows the detailed steps of the parallel AC-4-based algorithm. All
vertices in V are partitioned into V1 …VP (line 2) so that P workers can execute
the procedure ����p(Vp) in parallel (line 3). Compared with Algorithm 5, there
are three refinements. First, each worker p ∈ [1…P] has its private waiting set
Qp for propagation (line 6) so that the operations on Qp do not require to be syn-
chronized. Second, the out-degree counter degout has to be updated by the atomic

15286 B. Guo, E. Sekerinski

1 3

primitive fetch&add FAA since multiple workers may decrease such a counter
(line 11). Third, it is possible that v.degout = 0 (in line 13) is detected by multiple
workers; we use the atomic primitive CAS to set the v.status from ���� to ����
(line 13) and return ���� if successful, which ensures that v is added into a single
one waiting set Qp (line 14).

Correctness. We show the soundness and completeness together.

Theorem 8 (Soundness and Completeness) For any G = (V ,E) Algorithm 6 termi-
nates with sound(V) and complete(V).

Proof The invariant of the while-loop (lines 4–8) in procedure ����p(Vp) is the same
as that in Algorithm 5 except that it adds one more conjunct. That is, a removed ver-
tex can only be added into a single one Qp for propagation.

We now argue that the while-loop preserves this invariant:

• (∀v ∈ V ∶ v.degout = |{u ∈ v.post ∣ u.status = ���� ∨ u ∈ ∪Q1..P}|) is pre-
served as v.degout is off by one atomically when a worker is decreasing.

• (∀i, j ∈ {1..P} ∶ i ≠ j ∧ Qi ∩ Qj = �) is preserved as v.status is set from ���� to
���� by the atomic primitive ��� and only when successful, v is added to one Qp.

sound(Vp) ∧ complete(V �
p
⧵ Qp.pre) ∧ (∀v ∈ Qp ∶ v.status = 𝙳𝙴𝙰𝙳)

∧ (∀v ∈ V ∶ v.degout = |{u ∈ v.post ∣ u.status = 𝙻𝙸𝚅𝙴 ∨ u ∈ ∪Q1..P}|)

∧ (∀i, j ∈ {1..P} ∶ i ≠ j ⟹ Qi ∩ Qj = �)

15287

1 3

Efficient parallel graph trimming by arc-consistency

The postcondition of line 3 is then sound(V1) ∧ complete(V1)… sound(VP) ∧ complete(VP) ,
which is equivalent to sound(V) ∧ complete(V) . ◻

Complexities

Theorem 9 Algorithm 6 requires O(n + m) expected work, O(|Qp|DeginDegout)
depth, and thus O((n + m)∕P + |Qp|DeginDegout) time complexity.

Proof This algorithm has the same framework as Algorithm 5, so the total expected
work equals the running time of Algorithm 5, that is O(n + m) . The initial for-loop
(lines 1) can easily run in parallel within expected depth O(Degout).

We analyze the working depth for the procedure Trimp . For each round of the
outer while-loop (lines 7–11), it runs with depth |Qp| which is the upper-bound size
of waiting sets among P workers. As Qp is private for worker p without synchroniza-
tion, it is possible that |Qp| ≥ � . The most inner for-loop (line 9) runs sequentially
with depth O(Degin) , and the out-degree counters have to concurrently update with
depth Degout . Therefore, the total working depth is O(�DeginDegout) and thus the
worst-case time complexity is O((n + m)∕P + �DeginDegout) . ◻

Theorem 10 The space complexity of Algorithm 6 is O(n + m).

Proof By using the atomic primitive CAS in line 12, each vertex v ∈ V may be
removed at most once and then put into at most single one waiting set Qp , so all
waiting set for P workers require O(n) space. Similar to Algorithm 5, storing degout
and status requires O(n) space and the reverse edges require O(n + m) space (line 8).
Therefore, the total used space is O(n + m) . ◻

6 AC‑6‑based graph trimming

As mentioned, AC-4 has better worst-case time complexity than AC-3, but AC-4
always has a worse average running time than AC-3. Additionally, AC-4 does not
have the on-the-fly property. AC-6 improves AC-4 by only recording one support
for each value since one support is enough to guarantee that a value is viable. In this
case, compared with AC-4, AC-6 performs better in many applications, requires less
space usage, and has the on-the-fly property.

To the best of our knowledge, we are the first to introduce AC-6 to graph trim-
ming and call it the AC-6-based algorithm. The idea is novel: (1) each vertex v
maintains a set of vertices v.S that choose v as an available outgoing edge; (2) when
removing v as it has no outgoing edges, each vertex w ∈ v.S has to find another avail-
able outgoing edge to replace v; otherwise, w has to be removed; (3) this process
repeats until no vertices can be removed. In this section, we propose new sequential
and parallel AC-6-based algorithms for graph trimming, which is the main contribu-
tion of this work.

15288 B. Guo, E. Sekerinski

1 3

6.1 The sequential AC‑6‑based algorithm

Analogous to AC-6, the AC-6-based trimming algorithm is based on the concept of
support. That is, for each vertex v in a given directed graph G, the support of v is
one of v’s available outgoing edges and v cannot be removed if v’s support exists.
One auxiliary data structure, the supporting set, is needed to store all the supports
for propagation, which is formally defined below.

Definition 3 (Supporting Set) Given a directed graph G = (V ,E) , for a vertex v ∈ V ,
the supporting set v.S of v is the set of predecessors that choose v as their single one
support: (∀v ∈ V ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = 𝙻𝙸𝚅𝙴}) ∧ (∀v ∈ V ∶ v.S ≠ � ⟹

v.status = 𝙻𝙸𝚅𝙴) ∧ (∀u, v ∈ V ∶ u ≠ v ⟹ u.S ∩ v.S = �).

In other words, v.S records all LIVE vertices that have v as their support. Abso-
lutely, v must be LIVE if the vertices in v.S choose v as a support as an existing
support has to be an available outgoing edge; a vertex can be added into at most one
supporting set as each vertex only needs to maintain single one support.

Figure 2 illustrates the AC-6-based algorithm based on the part of the example
graph in Fig. 1. The dashed red arrows are the edges visited to find available sup-
ports and then added to the corresponding supporting set v.S. Each vertex is succes-
sively visited from v1 to v5 as shown in Fig. 2a–e. In Fig. 2a, v1 is visited and its first
support v4 is found with vertex v1 added into v4.S . In Fig. 2b, v2 is removed since
v2 has no outgoing edges; no propagation happens as v2.S is empty. In Fig. 2c, v3 is
visited and its first support v5 is found with v3 added into v5.S . In Fig. 2d, v4 is vis-
ited and its first support v5 is found with v3 added into v4.S . In Fig. 2e, v5 is removed
as it cannot find any support; since v5.S includes v3 and v4 the propagation happens
as follows: v3 finds a next available support v4 with v3 added into v4.S , and the v4 is
failed to find a next available support so that v4 should be removed in the next step.
In Fig. 2f, v4 is removed; since the supporting set v4.S includes vertices v1 and v3 the
propagation happens as follows: v1 finds a next available support, v3 , which is added
into v4.S , and v3 fails to find a next available support so that v3 should be removed
in the next step. In Fig. 2g, the vertex v3 is removed and v1 ∈ v3.S should be further
propagated. Finally, v1 should also be removed as it has no outgoing edges. As we
can see, AC-6-based trimming can remove some of the vertices without propaga-
tion, e.g., v2.

15289

1 3

Efficient parallel graph trimming by arc-consistency

Algorithm 7 shows the detailed steps of the sequential AC-6-based algorithm.
For each vertex v in the graph, a supporting set v.S is required for recording
the vertices that choose v as an available support. We first consider the proce-
dure ������(v) (lines 9–12). If v successfully finds a live successor w, then w
is added to v.S and the procedure finishes (lines 10 and 11). Otherwise, v has to
be removed from the graph as v has no available outgoing edges, and v is set to
DEAD and then put into the waiting set Q (line 12). Note that, the visited vertex w
is removed from v.post to avoid redundant checking (line 11), which can ensure
that each edge is visited at most once. Now we explain the main algorithm (lines
1–8). Initially, all vertices are LIVE and their supporting sets are empty (line 1).
For each vertex v ∈ V , the support v.s is checked by the procedure ������(v)

(a) (c)

(d) (e) (f) (g)

(b)

Fig. 2 Steps of sequential AC-6-based trimming algorithm based on part of the graph in Fig. 1. a visit v1;
b visit v2; c visit v3; d visit v4; e visit v5; f, g continue to propagate after removing v5

15290 B. Guo, E. Sekerinski

1 3

(line 3) and the removed vertices are added into Q for propagation (lines 4–8).
That is, a vertex w ∈ Q is removed from Q (line 5) and for all the vertices in w.S
are checked by the procedure ������(v�) (lines 6–8). This propagation is repeated
until Q is empty (line 4), as vertices may be removed and added into Q by the
procedure ������(v�) (line 8).

Correctness. We show the soundness and completeness together.

Theorem 11 (Soundness and Completeness) For any G = (V ,E) Algorithm 7 termi-
nates with sound(V) and complete(V).

Proof Let V ′ be the set of vertices visited by the outer for-loop (lines 2–8). The
invariant of the outer for-loop is that all vertices are sound, all visited vertices are
complete, all visited LIVE vertices must have a support, and that for each vertex
v ∈ V the supporting set v.S includes all visited vertices that choose v as their single
one support:

where S = (∪ v ∈ V ∶ v.S) . The invariant holds initially as setting all vertices to
���� and V ′ is empty.

The invariant of the while-loop (lines 4–8) is that all states are sound but setting
a vertex to ���� may lead to its predecessors to be incomplete; also, all vertices
w ∈ Q are set to ���� and all vertices in w.S have to update their support.

where S = (∪ v ∈ V ∶ v.S) and Q.S = (∪ q ∈ Q ∶ q.S) . Since the while-loop termi-
nates only when Q = � , it follows that the invariant of the outer for-loop is preserved.

We now argue that the while-loop preserves this invariant:

• sound(v) is preserved as v ∈ V is set to DEAD if w cannot find a support in
v.post, which implies that there cannot be LIVE vertices in v.post.

• complete(V � ⧵ Q.S) is preserved as v ∈ V � ⧵ Q.S is indeed set to DEAD if the sup-
port of v not exists, which implies that there cannot be LIVE vertices in v′.post.

• ∀v ∈ Q ∶ v.status = ���� is preserved as v is added to Q only after v is set to
DEAD.

• ∀v ∈ V � ∶ v.status = 𝙻𝙸𝚅𝙴 ⟹ v ∈ S is preserved as v has to find a support
after being visited if v is LIVE.

sound(V) ∧ complete(V �) ∧ (∀v ∈ V � ∶ v.status = 𝙻𝙸𝚅𝙴 ⟹ v ∈ S)

∧ (∀v ∈ V ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = 𝙻𝙸𝚅𝙴 ∧ u ∈ V �})

∧ (∀v ∈ V ∶ v.S ≠ � ⟹ v.status = 𝙻𝙸𝚅𝙴)

∧ (∀u, v ∈ V ∶ u ≠ v ⟹ u.S ∩ v.S = �)

sound(V) ∧ complete(V � ⧵ Q.S) ∧ (∀v ∈ Q ∶ v.status = 𝙳𝙴𝙰𝙳)

∧ (∀v ∈ V � ∶ v.status = 𝙻𝙸𝚅𝙴 ⟹ v ∈ S)

∧ (∀v ∈ V ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = 𝙻𝙸𝚅𝙴 ∧ u ∈ V �})

∧ (∀v ∈ V ∶ v.S ≠ � ⟹ v.status = 𝙻𝙸𝚅𝙴 ∨ v ∈ Q)

∧ (∀u, v ∈ V ∶ u ≠ v ⟹ u.S ∩ v.S = �)

15291

1 3

Efficient parallel graph trimming by arc-consistency

• ∀v ∈ V ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = ���� ∧ u ∈ V �} is preserved as the vis-
ited vertices u ∈ V � is LIVE when choosing v as a support.

• ∀v ∈ V ∶ v.S ≠ � ⟹ v.status = 𝙻𝙸𝚅𝙴 ∨ ∧v ∈ Q is preserved as new vertices
can be added into v.S if v is ���� , and after setting v to ���� and adding into
Q all vertices in v.S will find next available support.

• ∀u, v ∈ V ∶ u ≠ v ⟹ u.S ∩ v.S = � is preserved as each vertex maintains at
most single one support.

At termination of the outer for-loop (lines 2–8), we get Q = � and V � = V . The post-
condition of the outer for-loop is sound(V) ∧ complete(V) . ◻

Complexities

Theorem 12 The time complexity of the Algorithm 7 is O(n + m).

Proof Each vertex v ∈ V can be removed and then added into the waiting set Q at
most once. In the procedure DoPost(v), each outgoing edge of v is traversed at
most once to find the support (lines 10 and 11) as the visited vertex w is removed
from v.post to avoid repetitive visiting. In this case, the most inner for-loop (lines
6–8) calls procedure DoPost(v) to find a support for vertex v. Therefore, with this
assumption, the worst-case time complexity is O(n + m) . ◻

Theorem 13 The space complexity of the Algorithm 7 is O(n).

Proof The global waiting set Q has a maximum size of O(n) as each vertex v ∈ V
can be set to DEAD and added into Q at most once. The supporting sets have the
total size at most O(n) as each vertex v ∈ V has at most one support recorded in a
corresponding supporting set. Obviously, status requires O(n) space. Therefore, the
worst-case space complexity is O(n) . ◻

6.2 The parallel AC‑6‑based algorithm

Algorithm 8 shows the detailed steps of the parallel AC-6-based trimming algo-
rithm. Compared with the sequential AC-6-based trimming in Algorithm 7, there
are two refinements. First, each worker p ∈ [1…P] has its private waiting set Qp
for propagation so that the synchronization on Qp is unnecessary (lines 6, 8, and 19).
Second, the supporting set w.S for each vertex w ∈ V can concurrently have new
vertices added by multiple workers synchronized by locking (lines 14–17). When
adding vertices to w.S, vertex w has to be LIVE (line 15) as no vertices can be
added to w.S after setting w to DEAD. When setting vertex v to DEAD, we have to
lock v to ensure that no other workers are adding vertices to v.S; otherwise, after v is
added into Q and propagated (lines 19 and 8–11), other workers still have possibility
to add vertices into v.S which can never be propagated. In other words, we lock v.S
when setting v from LIVE to DEAD to ensure that all vertices in v.S are propagated
together. Note that, when removing vertices from w.S (line 10), it is unnecessary to

15292 B. Guo, E. Sekerinski

1 3

lock w.S as currently w is DEAD so that no workers can add vertices into w.S and w
is only accessed by a single worker, p.

We implement the lock by the CAS primitive with busy waiting (lines 20 and 21).
Here, the busy waiting is suitable as there are at most two operations within locking
(lines 15 and 16) so that the expected waiting time is really short.

Correctness.

Theorem 14 (Soundness and Completeness of Parallel AC-6-based Trimming) For
any G = (V ,E) Algorithm 8 terminates with sound(V) and complete(V).

Proof The invariant of the while-loop (lines 4–8) in procedure ����p(Vp) is the same
as that in Algorithm 5 except that it adds one more conjunct. That is, a removed ver-
tex can only be added into a single one Qp for propagation.

15293

1 3

Efficient parallel graph trimming by arc-consistency

where S = (∪ v ∈ V ∶ v.S) , Qp.S = (∪ q ∈ Qp ∶ q.S) , and V � = ∪V �
1..P

 . In the algo-
rithm, for each vertex v, multiple workers add new vertices into v.S concurrently,
and during this time v cannot be set to DEAD. We now argue that the while-loop
preserves this invariant:

• ∀v ∈ Vp ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = ���� ∧ u ∈ V �} is preserved as v is
locked when a worker is adding new vertices to v.S.

• ∀v ∈ Vp ∶ v.S ≠ � ⟹ v.status = 𝙻𝙸𝚅𝙴 ∨ (v.status = 𝙳𝙴𝙰𝙳 ∧ v ∈ Qp) is pre-
served as (1) v is locked when the worker p setting v to ���� to ensure that
after setting v to DEAD no vertices can be added into v.S by other workers, and
(2) only the current worker p can set v to ���� and add v to the private set Qp.

• ∀i, j ∈ {1..P} ∶ i ≠ j ∧ Qi ∩ Qj = � is preserved as only single one worker p
can add v to Qp after setting v to ����.

At the termination of outer for-loop (lines 2–8), we get Qp = � and V �
p
= Vp . The post-

condition of line 3 is then sound(V1) ∧ complete(V1) ∧⋯ ∧ sound(V
P
) ∧ complete(V

P
) ,

which is equivalent to sound(V) ∧ complete(V) . ◻

Complexities

Theorem 15 Algorithm 8 requires O(n + m) expected work, O(|Qp|Degin
2) depth,

and O((n + m)∕P + |Qp|Degin
2) time complexity.

Proof This algorithm has the same framework as Algorithm 7, so the total expected
work equals the running time of Algorithm 7, that is O(n + m) . The initial for-loop
(lines 1) can run in parallel within expected depth O(1).

We analyze the working depth for procedure Trimp . For each round of the outer
while-loop (lines 7–11), it runs with depth |Qp| which is the upper-bound size of
waiting sets among P workers. As Qp is private for a worker p without synchroniza-
tion, it is possible that |Qp| ≥ � . The most-inner for-loop (line 9) runs sequentially
with depth Degin as Degin is the upper-bound size for a supporting set. The support-
ing sets concurrently add new vertices with depth Degin (line 16). The locking oper-
ation (lines 14 and 18) needs to busy-check by the CAS primitive only a few times
with high probability as there are at most two operations within the lock. Therefore,
the total working depth is O(|Q|Degin

2) with high probability and the worst-case
running time is O((n + m)∕P + |Q|Degin

2) with high probability. ◻

sound(Vp) ∧ complete(V �
p
⧵ Qp.S) ∧ (∀v ∈ Qp ∶ v.status = 𝙳𝙴𝙰𝙳)

∧ (∀v ∈ V �
p
∶ v.status = 𝙻𝙸𝚅𝙴 ⟹ v ∈ S)

∧ (∀v ∈ Vp ∶ v.S ⊆ {u ∈ v.pre ∣ u.status = 𝙻𝙸𝚅𝙴 ∧ u ∈ V �})

∧ (∀v ∈ Vp ∶ v.S ≠ � ⟹ v.status = 𝙻𝙸𝚅𝙴 ∨ v ∈ Qp)

∧ (∀u, v ∈ Vp ∶ u ≠ v ⟹ u.S ∩ v.S = �)

∧ (∀i, j ∈ {1..P} ∶ i ≠ j ⟹ Qi ∩ Qj = �)

15294 B. Guo, E. Sekerinski

1 3

Theorem 16 The space complexity of Algorithm 8 is O(n) , which equals to its
sequential version Algorithm 7.

Proof Each vertex v ∈ V may be removed at most once and then put into at most one
waiting set Qp , so all waiting sets require O(n) space. Each vertex has at most one
support which is stored into the corresponding supporting set and thus the total size
of all supporting sets is O(n) . The status for each vertex v ∈ V has the size of O(n) .
Therefore, the total space complexity is O(n) . ◻

7 Related work

7.1 Parallel DFS‑based SCC decomposition

In Sect. 1, several methods for BFS-based SCC decomposition were introduced.
Although DFS is inherently sequential [48], there is a lot of work based on Tarjan’s
algorithm. In [38], Lowe proposed a synchronized Tarjan’s algorithm, that is, mul-
tiple instances of Tarjan’s algorithm run without overlapping stacks. To do this, a
worker is suspended on a vertex which is located in another worker’s stack and then
both workers’ stacks can be merged if necessary. The drawback is that this stack
merging leads to a worst-case quadratic time complexity of O(n2) . Lowe’s experi-
ments show decent speedups on model checking graphs with trivial SCCs, but not
for graphs with large SCCs. In [49], Renault et al. present a novel algorithm with-
out sacrificing the linear time complexity, O(n + m) , and the on-the-fly property.
Multiple instances of Tarjan’s algorithm run and communicate completely explored
SCCs via a shared union-find structure. Bolomen et al. [7, 8] proposed an improved
UFSCC algorithm which communicates partially found SCCs by using a modified
union-find data structure. In their experiments, UFSCC shows a significant speedup
compared to Renault’s algorithm [49] on implicit model checking inputs and syn-
thetic graphs. One notable property of these algorithms is that they can run on-the-
fly on implicit graphs.

However, above DFS-based SCC algorithms do not utilize graph trimming tech-
niques to remove trivial SCCs. A possible reason is that the traditional graph trim-
ming technique has quadratic worst-case time complexity and, more importantly, it
is hard to run on-the-fly. The proposed parallel AC-6-based graph trimming algo-
rithm has linear running time and has the on-the-fly property, so it can be used to
quickly trimming a high ratio of size-1 SCCs for above DFS-based SCC algorithms.

7.2 Graph trimming

Generally, the term “graph trimming” is widely used in graph algorithms to mini-
mizing the search space and the trimming rules may be different for different prob-
lems. For example, in [26], “graph trimming" computes a smaller and smaller
unsatisfiable core for a propositional formula; in [24], “graph trimming" is used to
minimize the number of vertices as monitors to identify all interesting links; in [20],

15295

1 3

Efficient parallel graph trimming by arc-consistency

given a graph in which each vertex has a nonnegative weight, “graph trimming"
deletes vertices with a small total weight such that the remaining graph does not
contain any long simple paths. Note that, in the current work, given a directed graph,
the terminology “graph trimming” is specifically confined as each vertex has at least
one outgoing edge.

Another related term is “graph pruning". For example, in [25], given a geographi-
cal graph, “graph pruning" can dynamically jump over some searching branches by
some simple rules for finding the path between two nodes.

8 Implementation

All graph trimming algorithms are implemented in C++ with OpenMP as tread-
ing library. In this section, we explore the details of implementation, especially the
parallelism.

Graph Storage All tested graphs are stored in the compressed sparse row CSR
format [28] for efficient traversals. With this format, all edges are linear in the mem-
ory. In other words, for each vertex the edges can be traversed in sequential order.
In the current work, our experiments focus on graphs with edges linearly stored in
memory.

Parallelism. OpenMP (Open Multi-Processing) [16] is an application program-
ming interface (API) that supports multi-platform shared-memory multiprocess-
ing programming in C, C++, and Fortran, on many platforms, instruction-set
architectures and operating systems. In this paper, OpenMP (version 4.5) is used
as the threading library to implement the parallel algorithms. The task-level paral-
lelism is implemented by using the clause “#pragma omp parallel for”
(C++ code). Given a input graph, this implementation statically assigns the same
number of vertices to each worker p. For data-level parallelism, however, it is criti-
cal to handle a potential workload imbalance problem. Note that real-world graphs
can be highly irregular because of their scale-free property, e.g., a few vertices can
have a huge number of successors while many vertices have only several succes-
sors. Therefore, statically assigning the same number of vertices to each worker
naturally induces workload imbalance since the work of each vertex involves imme-
diate propagation. There is a better strategy. All of the vertices in the graph can
be dynamically assigned to each worker p by the clause “#pragma omp for
schedule(dynamic, s)”. That means each worker executes a chunk of itera-
tions with size s and then requests another chunk until no chunks remain to distrib-
ute. If one of the workers finishes processing a chunk of vertices early, it applies to
the next chunk of vertices at once without waiting for other workers. In this way, we
realize a relatively balanced load for each worker without difficulties. Note that the
chunk size cannot be either much large or small; the too large chunk size may cause
workload imbalance for multiple workers; the too small chunk size may cause much
running time spent on scheduling.

For simplicity, our parallel trimming algorithms sacrifice some parallelism.
That is, the most inner for-loop can run in parallel (lines 12–13 in Algorithm 1,
lines 9–11 in Algorithm 6, and lines 9–11 in Algorithm 8); the private waiting set

15296 B. Guo, E. Sekerinski

1 3

Qp for a worker p can be balanced in Algorithm 6 and Algorithm 8) so that Qp has
at most � vertices. As shown in Table 4, the working depth can be improved if
we achieve full parallelism. However, the scheduler will be challenged to parallel
inside each worker p efficiently. One solution is to maintain a frontier (subset) of
all affected vertices, and in each step all vertices in a frontier can be processed in
parallel [17].

In practice, our algorithms can be highly parallelized. There are two reasons.
First, most real graphs always have millions of edges, and |Q|, Degin , and Degout
are relatively much smaller than n + m . Secondly, multi-core machines always
have a limited number of workers, e.g., P = 32 . Therefore, our trimming algo-
rithms can achieve a load balance among multiple workers with high probability.

Traverse Edges Since the edges are linearly stored in memory, we can optimize
the implementation of trimming algorithms. In the procedure ZeroOutDegree
of Algorithm 4, for vertex v only the first LIVE edge needs to be found. In this
case, each vertex can maintain an index edge_index to record the position of vis-
ited edges. In the next round, we can “jump” over the edges that have already
visited. By doing this, we can reduce the number of traversed edges to a certain
degree. Similarly, we can apply this strategy to the procedure DoPost of Algo-
rithms 7 and 8; by doing this, each edge can be traversed at most once.

Cache-Friendliness For multi-core architectures, contiguous memory access-
ing is much faster than random memory accessing because of the possibility
of pre-fetching by L1, L2, and L3 caches. Of course, accessing cache is faster
than accessing the memory by an order of magnitude. For explicit graphs stored
in memory, the cache can affect the running time by an order of magnitude. A
cache-friendly program has a large portion of contiguous memory accessing that
can fully utilize the cache to obtain speedup. In contrast, a cache-unfriendly pro-
gram has a large portion of random memory accessing that cannot efficiently uti-
lize the cache.

Since all edges are stored in contiguous memory as CSR format for a tested
graph, we compare the cache property of three different graph trimming methods
together as follows:

• AC-3-based Graph Trimming is cache-friendly as all edges are stored in an
array and can be traversed sequentially with a high cache hit rate.

• AC-4-based Graph Trimming is less cache-friendly as each vertex v are traversed
almost randomly, but v’s edges are traversed sequentially with a medium cache
hit rate.

Table 4 The worst-case
work, depth, time, and space
complexities of full parallelized
graph trimming algorithms

Trimming Worst-Case (O)

Work Depth Space

AC-3-based �(n + m) � n
AC-4-based n + m �Degout n + m

AC-6-based n + m �Degin n

15297

1 3

Efficient parallel graph trimming by arc-consistency

• AC-6-based Graph Trimming is least cache-friendly as for each vertex v, both v
and v’s edges are traversed almost randomly with low cache hit rate.

Memory Usage We compare the practical memory usage in Table 5. Assume that
storing a vertex or an integer takes H bits. All three algorithms require 1 bit for
the status of each vertex, in total n bits. For both AC4Trim and AC6Trim, there are
P waiting sets Q1 …QP , in total nH bits, since each vertex can be put into Qp at
most once. For AC4Trim, a reversed graph has to be loaded into memory, in total
(n + m)H bits; each vertex maintains an out-degree counter degout , in total nH bits.
For AC6Trim, each vertex has a supporting set S, in total nH bits, since each vertex
can be put into a set S at most once. For AC3Trim and AC6Trim, each vertex main-
tains an index edge_index to “jump” over the visited edges, in total nH bits.

9 Experiments

In this section, we evaluate three different parallel algorithms for graph trimming:

• the AC-3-based trimming algorithm [29, 31] (AC3Trim for short),
• the AC-4-based trimming algorithm [41] (AC4Trim for short),
• the AC-6-based trimming algorithm (AC6Trim for short).

The experiments are performed on a server with an AMD CPU (16 cores, 32 hyper-
threads, 32 MB of last-level cache) and 96 GB main memory. The server runs the
Ubuntu Linux (18.04) operating system. All tested algorithms are implemented in
C++ and compiled with g++ version 7.3.0 with the -O3 option.1 OpenMP [16] ver-
sion 4.5 is used as the threading library. We perform every experiment at least 50
times (at least 10 times for time-consuming experiments) and calculate their means
with 95% confidence intervals.

We first give in total 15 real and synthetic benchmark graphs. Before the evalua-
tion, we discuss the workload balance. Then, over these tested graphs, we evaluate

Table 5 Compare the memory
usage for AC3Trim, AC4Trim
and AC6Trim, where storing a
vertex takes H bits

AC3-based AC4-based AC6-based

bit[n]: ∀v.status bit[n]: ∀v.status bit[n]: ∀v.status
bit[nH]:∀v.edge_index bit[nH]: ∀v.degout bit[n]: ∀v.lock

bit[nH]: Q1 …QP bit[nH]:∀v.edge_index
bit[(n + m)H]: GT bit[nH]: ∀v.S

bit[nH]: Q1 …QP

1 All our implementations, benchmarks, and results are available at https:// github. com/ Itisb en/ graph-
trimm ing. git.

https://github.com/Itisben/graph-trimming.git
https://github.com/Itisben/graph-trimming.git

15298 B. Guo, E. Sekerinski

1 3

the number of traversed edges and then compare the real running times by varying
the workers from 1 to 32. We also evaluate the stability and the scalability by using
16 workers.

9.1 Graph benchmarks

We evaluate the performance of our method on a variety of model checking, real-
world, and synthetic graphs shown in Table 6.

• The cambridge.6, bakery.6 and leader-filters.7 graphs come from the model
checking problems in the BEEM database [47], which are implicit and can be
generated on-the-fly. For convenience, these graphs are converted to explicit
graphs [8] and stored in files.

• The livej, patent, and wikitalk graphs are obtained from SNAP [37];2 they rep-
resent the Live-Journal social network [3], the US patent dataset is maintained
by the National Bureau of Economic Research [36], and Wikipedia Talk (com-
munication) network [35], respectively. The dbpedia, baidu, and wiki-talk-en
graphs are collected from the University of Koblenz-Landau [34]; they repre-
sent the DBpedia network [2], the hyperlink network between the articles of the

Table 6 The characteristics for model checking, real-world, and synthetic graphs

Here, columns denote the number of vertices n, the number of edges m, the maximum in-degree, the
maximum out-degree, the number of peeling steps, and the percentage of trimmable vertices, respec-
tively

Name |V| |E| Degin Degout � %Trim

Cambridge.6 3.3M 9.5M 15 6 65 0.25%
Bakery.6 11.8M 40.4M 24 4 47 22.26%
Leader-filters.7 26.3M 91.7M 12 6 73 100.00%
Dbpedia 4.0M 13.8M 473.0K 1.0K 116 36.23%
Baidu 2.1M 17.8M 98.0K 2.6 9 27.97%
Livej 4.8M 69.0M 14.0K 20.3K 8 12.23%
Patent 6.0M 16.5M 779 770 5 100.00%
Wiki-talk-en 3.0M 25.0M 121.3K 488.2K 7 87.42%
Wikitalk 2.4M 5.0M 3.3K 100.0K 5 94.49%
Com-friendster 125M 1.8B 4.2K 3.6K 11.7K 100.00%
Twitter 41.4B 1.4B 770.2K 3.9M 6 10.05%
Twitter-mpi 52.6B 2.0B 3.5M 780.0K 7 17.52%
ER 1.0M 8.0M 25 24 3 0.03%
BA 1.0M 8.0M 8 5.2K 122 100%
RMAT 1.0M 8.0M 335 1.9K 7.0K 99.98%

2 https:// snap. stanf ord. edu.

https://snap.stanford.edu

15299

1 3

Efficient parallel graph trimming by arc-consistency

Baidu [46] encyclopedia, and the communication network of the English Wiki-
pedia [55], respectively.

• The com-friendster, twitter and twitter-mpi are three super large graphs with bil-
lions of edges obtained from the Network Repository [50];3 they represent the
online gaming social network [54], the follower network from Twitter [9], the
twitter follow data collected in 2009 [10], respectively.

• The ER, BA, and RMAT graphs are synthetic graphs; they are generated by the
SNAP [37] system using the Erdös-Rényi graph model (which generates a ran-
dom graph), the Barabasi–Albert graph model (which generates a graph with
power-law degree distribution), and the R-MAT graph model (which generates
large-scale realistic graph similar to social networks), respectively; for these gen-
erated graphs, the average degree is fixed to 8 by choosing 1,000,000 vertices
and 8,000,000 edges.

All these graphs are stored in the compressed sparse row (CSR) binary format [28,
29], which is compact and memory bandwidth-friendly. Taking the super large
graph twitter for example, the text file that includes all edges requires 30 GB while
the CSR binary format only requires 6 GB.

Table 6 provides an overview of the 15 tested graphs. For some graphs, e.g., cam-
bridege.6 and ER, less than 1% of vertices can be trimmed. However, for most of the
other graphs, a high ratio of vertices can be trimmed, especially for leader-filters.7,
BA, and com-friendster, whose vertices can be trimmed altogether. More impor-
tantly, for most graphs, the trimming steps � , maximum in-degree Degin , and maxi-
mum out-degree Degout are always small. When analyzing the parallel time com-
plexity, these three values are associated with the parallel depths. The small values
of the depths indicate that the execution can be highly parallelized [6].

9.2 Workload balance

Given a tested graph, all vertices are partitioned into multiple chunks, which can be
dynamically assigned to workers for workload balance. One issue is how to deter-
mine the size of chunks. A large size of chunks may lead to workload imbalance,
while a small size of chunks may lead to a high cost of scheduling. Since the trend
is similar for all tested graphs, we select three typical graphs with a variety of Degin ,
Degout , and � for the evaluation. In Fig. 3, we test three trimming algorithms over
three selected graphs, leader-filters.7, livej, and wiki-talk-en, that have millions of
vertices, by using 16 workers and varying the chunk size from 1 to 220 . All three
trimming algorithms tend to be efficient when choosing a chunk size between 210
and 216 . Therefore, in our experiments, we fix the chunk size to 212 = 4096 for both
workload balance and efficient scheduling.

3 http:// netwo rkrep osito ry. com.

http://networkrepository.com

15300 B. Guo, E. Sekerinski

1 3

The other issue is the upper-bound size of the waiting set Qp for each worker
p in AC4Trim and AC6Trim. Here, Qp is private to worker p, and thus the vertices
in Qp are processed sequentially by worker p without synchronization. A large size
of Qp may lead to workload imbalance. In Table 7, over all tested graphs we show
the upper-bound size of Qp , denoted as |Qp| , for AC4Trim and AC6Trim by using 16
workers. We can see that |Qp| is relatively small compared with millions of vertices.
Further, over all tested graphs AC6Trim has |Qp| bounded by 900, while AC4Trim
has |Qp| up to 20761. Especially, AC6Trim has much smaller values of |Qp| than
AC4Trim for graphs like dbpedia and twitter-mpi. That means that AC6Trim on aver-
age has better workload balance than AC4Trim.

Table 7 The upper-bound size
of Qp for AC4Trim and AC6Trim
by using 16 workers

The best and worst cases are in bold for each column

Name AC4Trim |Qp| AC6Trim |Qp|

Cambridge.6 17 6
Bakery.6 21 52
Leader-filters.7 16 103
Dbpedia 20761 852
Baidu 439 108
Livej 274 8
Patent 95 55
Wiki-talk-en 84 5
Wikitalk 33 7
Com-friendster 646 677
Twitter 293 287
Twitter-mpi 15217 327
ER 1 1
BA 66 27
RMAT 299 411

AC3Trim AC4Trim AC6Trim

20 24 28 212 216 220
27

29

211

213

215

217

Chunk size

T
im

e
us
ed

(m
s)

leader-filters.7

20 24 28 212 216 220
24

26

28

210

Chunk size

T
im

e
us
ed

(m
s)

livej

20 24 28 212 216 220

24

25

26

27

28

29

Chunk size

T
im

e
us
ed

(m
s)

wiki-talk-en

Fig. 3 The practical running time for AC3Trim, AC4Trim and AC6Trim with 16 workers by varying the
chunk size

15301

1 3

Efficient parallel graph trimming by arc-consistency

9.3 Evaluating the number of traversed edges

To evaluate the arc-consistency algorithms, the traditional approach is to count the
total number of checked constraints. For each constraint check, a pair of values in
the domain D(Xi) and D(Xj) is checked. Such an evaluation is reasonable because
(1) most of the running time is spent on checking numerous constraints, (2) the time
used for checking each constraint significantly varies for different kinds of arc-con-
sistency problems. Analogous to evaluating arc-consistency algorithms, we compare
the total number of traversed edges of three trimming algorithms. This is especially
meaningful for the implicit graphs since their edges are generated on-the-fly, costing
most of the running time.

In this experiment, we exponentially increase the number of workers from 1 to 32
and count the largest number of traversed edges per worker over graphs in Table 6.
The plots in Fig. 4 depict the maximum number of traversed edges per worker for
the three compared methods. The x-axis is the number of workers and the y-axis is
the number of traversed edges. Also, we choose the total number of edges in a graph
as a baseline (denoted as m). Note that, for the AC-4-based trimming algorithm, the
out-degree counter of each vertex v in graph is initialized as v.degout = |v.post| . To
calculate v.degout , there are two cases: (1) we can traverse all v’s successors one by
one to count the total numbers of successors (denoted as AC4Trim), which means
all v’s edges of are traversed once; (2) if v′ successors are stored successively, we
can take the difference between the index of v’s first successor and v’s last succes-
sor without traversing the edges (denoted as AC4Trim*), which means only v is
traversed once and all v’s edges are not traversed. Absolutely, AC4Trim traverses a
higher number of edges than AC4Trim*.

In Fig. 4, a first look over nearly all testing graphs reveals that the number of tra-
versed edges of all three algorithms is linearly decreasing with an increasing number
of workers, which achieves a good load balance. Over most of the testing graphs,
AC6Trim traverses fewer edges compared with AC4Trim and AC3Trim. AC3Trim
sometimes traverses more edges than the baseline m for some graphs with large � .
Specifically, we make four observations:

• Over graphs with a higher value of � , e.g., cambridge.6, bakery.6, leader-filter.7,
dbpedia, com-friendster and RMAT, AC3Trim always traverses much more edges
than both AC4Trim and AC6Trim and even more than the baseline m. This is
because AC3Trim has the worst work complexity O(�(n + m)) which requires �
number of repetitions, but AC4Trim and AC6Trim have a linear work complexity
of O(n + m).

• Over the graphs with a lower value of � , e.g., wiki-talk-en and wikitalk, AC3Trim
traverses fewer edges than AC4Trim. This is because AC3Trim executes always
close to the best-case time complexity, but AC4 executes always close to the
worst-case time complexity. This is why AC3Trim is sometimes more powerful
than AC4Trim in real-world graphs with a relatively low value of �.

• Over all graphs, AC6Trim always traverses much fewer edges than AC4Trim even
if they have nearly the same time complexity. The reason is that AC6Trim can
traverse only part of the edges of removed vertices, which is close to the best-

15302 B. Guo, E. Sekerinski

1 3

AC3Trim AC4Trim AC4Trim* AC6Trim m

1 2 4 8 16 32
210

215

220

225

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s cambridge.6

1 2 4 8 16 32
218

221

224

227

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s bakery.6

1 2 4 8 16 32

222

224

226

228

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s leader-filter.7

1 2 4 8 16 32
217

220

223

226

229

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s dbpedia

1 2 4 8 16 32
216

218

220

222

224

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s

baidu

1 2 4 8 16 32
216

218

220

222

224

226

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s

livej

1 2 4 8 16 32

219

220

221

222

223

224

225

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s patent

1 2 4 8 16 32
214

216

218

220

222

224

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s wiki-talk-en

1 2 4 8 16 32
213

215

217

219

221

223

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s wiki-talk

1 2 4 8 16 32230

231

232

233

234

235

236

237

Number of workers

N
um

be
r
of

tr
av
er
se
d
ed

ge
s com-friendster

1 2 4 8 16 32
220

222

224

226

228

230

Number of workers

N
um

be
r
of

tr
av
er
se
d
ed

ge
s twitter

1 2 4 8 16 32

221

223

225

227

229

231

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s twitter-mpi

1 2 4 8 16 32
26

210

214

218

222

Number of workers

N
um

be
r
of

tr
av
er
se
d
ed

ge
s ER

1 2 4 8 16 32

221

222

223

224

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s BA

1 2 4 8 16 32

223

225

227

229

Number of workers

N
um

be
r
of

tr
av

er
se
d
ed

ge
s RMAT

Fig. 4 The maximum number of traversed edges per worker for AC3Trim, AC4Trim, AC4Trim* and
AC6Trim by varying the number of workers. The number of edges m in a graph is chosen as a baseline

15303

1 3

Efficient parallel graph trimming by arc-consistency

case time complexity. However, AC4Trim has to traverse all edges to initialize
the counters ∀v ∈ V ∶ v.degout and all ingoing edges of removed vertices, which
is close to the worst-case time complexities. Therefore, AC6Trim certainly trav-
erses fewer edges than AC4Trim.

• Over all graphs, for all three methods, the number of traversed edges is well
bounded without obvious variation even these three methods are non-determinis-
tic. That is, for the number of traversed edges, the effect of non-determinism can
be omitted.

In Table 8, columns 2–4 compare the ratio of the maximum number of traversed
edges per worker between using a single worker and using 16 workers for AC3Trim,
AC4Trim and AC6Trim, respectively. We can see that for AC3Trim, the ratio is at
least 5.9 as AC3Trim is easy to be parallelized without using locks or atomic primi-
tives. We also can see that for AC3Trim the ratio is larger than 16 in some graphs,
e.g., com-friendster and ER. The reason is that parallel AC3Trim is non-determinis-
tic; that is, different trimming orders lead to different numbers of traversed edges;
if numerous vertices are early determined as DEAD, the time complexity is close to
the best case. For AC4Trim and AC6Trim, the ratio is relatively low in some graphs
with large � , e.g., RMAT and com-friendster, as large � always leads to high working
depths.

In columns 5 and 6 of Table 8, we fix using 16 workers and compare the ratio of
traversed edge numbers between AC3Trim and AC6Trim and between AC4Trim and
AC6Trim. We can see that AC6Trim traverses much fewer edges than AC3Trim, up

Table 8 Compare the ratio for the maximum number of traversed edges per worker

The best and worst cases are in bold for each column

Name 1-worker vs 16-worker AC3Trim vs AC4Trim vs

AC3Trim AC4Trim AC6Trim AC6Trim AC6Trim

Cambridge.6 13.04 15.97 11.74 58.29 2.08
Bakery.6 12.90 15.61 12.58 25.44 2.22
Leader-filters.7 13.22 15.15 13.23 4.71 1.75
Dbpedia 14.13 5.94 10.26 42.43 6.69
Baidu 13.49 13.07 11.19 5.79 9.35
Livej 13.69 15.90 13.38 7.58 13.51
Patent 14.63 8.09 15.07 1.04 3.72
Wiki-talk-en 13.33 15.76 13.17 4.87 35.33
Wikitalk 10.89 15.55 11.05 4.31 36.51
Com-friendster 16.78 2.00 1.07 5.57 1.00
Twitter 14.54 15.92 14.95 5.45 33.31
Twitter-mpi 13.66 15.87 13.56 5.77 32.00
ER 20.00 16.00 12.47 1.87 6.24
BA 5.90 4.84 1.33 0.43 0.55
RMAT 10.23 2.07 1.05 10.39 1.02

15304 B. Guo, E. Sekerinski

1 3

AC3Trim AC4Trim AC6Trim

1 2 4 8 16 32

23

25

27

29

Number of workers

T
im

e
us
ed

(m
s)

cambridge.6

1 2 4 8 16 32
25

27

29

211

213

215

Number of workers

T
im

e
us
ed

(m
s)

bakery.6

1 2 4 8 16 32
27

28

29

210

211

212

213

214

Number of workers

T
im

e
us
ed

(m
s)

leader-filter.7

1 2 4 8 16 32

26

27

28

29

210

211

Number of workers

T
im

e
us
ed

(m
s)

dbpedia

1 2 4 8 16 32
23

24

25

26

27

28

29

Number of workers

T
im

e
us
ed

(m
s)

baidu

1 2 4 8 16 32
25

26

27

28

29

210

Number of workers

T
im

e
us
ed

(m
s)

livej

1 2 4 8 16 32

25

27

29

211

213

Number of workers

T
im

e
us
ed

(m
s)

patent

1 2 4 8 16 32

24

26

28

210

Number of workers

T
im

e
us
ed

(m
s)

wiki-talk-en

1 2 4 8 16 32

23

24

25

Number of workers

T
im

e
us
ed

(m
s)

wiki-talk

1 2 4 8 16 32
215

217

219

221

223

Number of workers

T
im

e
us
ed

(m
s)

com-friendster

1 2 4 8 16 32

29

210

211

212

213

Number of workers

T
im

e
us
ed

(m
s)

twitter

1 2 4 8 16 32
28

29

210

211

212

213

Number of workers

T
im

e
us
ed

(m
s)

twitter-mpi

1 2 4 8 16 32

22

23

24

25

26

Number of workers

T
im

e
us
ed

(m
s)

ER

1 2 4 8 16 32
25

26

27

28

Number of workers

T
im

e
us
ed

(m
s)

BA

1 2 4 8 16 32

26

28

210

212

214

Number of workers

T
im

e
us
ed

(m
s)

RMAT

Fig. 5 The real running time for AC3Trim, AC4Trim and AC6Trim by varying the number workers

to 58 times over the graph cambridge.6; AC6Trim traverses much fewer edges then
AC4Trim, up to 36 times over the graph wikitalk. AC3Trim traverses the fewest edges
in some graphs, e.g., BA, as the time complexity is close to the best case.

15305

1 3

Efficient parallel graph trimming by arc-consistency

9.4 Evaluating the real running time

In this experiment, we exponentially increase the number of workers from 1 to 32 and
evaluate the real running time over graphs in Table 6. The plots in Fig. 5 depict the per-
formance of the three compared methods. The x-axis is the number of workers and the
y-axis is the execution time (millisecond). The first look over all testing graphs reveals
that the trends for the running time are much different from the trends for the number of
traversed edges shown in Fig. 4. This can be explained as follow:

• Although AC6Trim always traverses the fewest numbers of edges, AC6Trim is
slower than AC4Trim in some graphs, e.g., cambridge.6, livej, pokec and ER,
and even AC3Trim is the fastest in some graphs, e.g., BA. The main reason is that
AC6Trim is cache-unfriendly while AC3Trim and AC4Trim are cache-friendly. That
means AC6Trim cannot fully use caches to archive the best performance even if
AC6Trim traverse the least number of edges. The other reason is that maintaining
the supporting sets in AC6Trim costs much more computational time than main-
taining the out-degree counters in AC4Trim; there is no auxiliary data structure in
AC3Trim so that no computational time is spent on this part.

• In AC4Trim, the running times have a wide variation in certain graphs, e.g., bak-
ery.6, leader-filter.7, livej. The reason is that AC4Trim is sometimes less cache-
friendly. The unexpected missing cache leads to the performance decreased. How-
ever, AC3Trim is always cache-friendly and AC6Trim is always cache-unfriendly so
that their performance is more stable than AC3Trim.

• In AC6Trim, the running times begin to increase when using more than 4 workers in
certain graphs, e.g., dbpedia and baidu. The reason is that the supporting set shared
by multi-worker is synchronized by busy waiting, which leads to contention. At the
same time, AC4Trim still has not obvious speedup as there is less contention to use
atomic primitive updating the out-degree counters. However, AC3Trim always has a
speedup by multiple workers and even has the best performance with 16 workers in
some graphs, e.g., BA, as AC3Trim has no shared data structures and thus no con-
tention.

In columns 2–4 of Table 9 we compare the running time speedup between using one
worker and 16 workers for AC3Trim, AC4Trim, and AC6Trim, respectively. It is clear
that AC3Trim achieves the best speedup and AC4 achieves the worst speedup. This is
because of the contention on shared data structures with multiple workers. In columns
5 and 6 of Table 9 we fix using 16 workers and compare the speedups for the run-
ning time between AC6Trim and AC3Trim and between AC6Trim and AC4Trim. We can
see that our AC6Trim is up to 24 times faster than AC3Trim over RMAT and up to 7.8
times faster than AC4Trim over leader-filters.7. However, in some graphs, AC4Trim and
AC3Trim have better performances than AC6Trim.

15306 B. Guo, E. Sekerinski

1 3

Table 9 Compare the speedups for running times between using 1-worker and 16-worker for AC3Trim,
AC4Trim, and AC6Trim, respectively; by fixing with 16 workers, compare the running time speedup
between AC6Trim and AC3Trim and between AC6Trim and AC4Trim

The best and worst cases are in bold for each column

Name 16-workers speedup vs 1-worker AC6Trim speedup vs

AC3Trim AC4Trim AC6Trim AC3Trim AC4Trim

Cambridge.6 2.42 2.72 2.37 7.15 0.13
Bakery.6 2.54 771.96 2.87 7.39 0.33
Leader-filters.7 2.04 58.42 2.32 6.27 0.71
Dbpedia 3.31 2.67 0.84 4.71 0.34
Baidu 3.34 11.38 1.14 0.58 0.33
Livej 3.07 3.11 2.36 1.00 0.30
Patent 4.71 44.02 7.11 1.03 4.65
Wiki-talk-en 3.45 54.85 3.37 1.02 2.10
Wikitalk 3.20 2.28 3.21 0.82 2.12
Com-friendster 8.09 1.13 1.28 19.62 1.00
Twitter 6.42 4.32 5.80 0.70 0.39
Twitter-mpi 5.85 5.79 2.99 0.62 0.18
ER 3.68 3.79 1.86 0.19 0.12
BA 5.32 1.94 1.92 0.18 0.36
RMAT 6.62 1.09 1.18 20.97 0.88

AC3Trim AC4Trim AC6Trim

10 20 30 40 50

223

224

225

Repeat Times

N
um

be
r
of

tr
av

er
se
d
ed

ge
s leader-filters.7

10 20 30 40 50
218

219

220

221

222

Repeat Times

N
um

be
r
of

tr
av

er
se
d
ed

ge
s livej

10 20 30 40 50

216

217

218

219

220

221

Repeat Times

N
um

be
r
of

tr
av

er
se
d
ed

ge
s wiki-talk-en

10 20 30 40 50

28

29

210

211

Repeat Times

T
im

e
us
ed

(m
s)

leader-filters.7

10 20 30 40 50

25

26

27

Repeat Times

T
im

e
us
ed

(m
s)

livej

10 20 30 40 50

24

25

Repeat Times

T
im

e
us
ed

(m
s)

wiki-talk-en

Fig. 6 The stability of the traversed edge number and the running time for AC3Trim, AC4Trim and
AC6Trim

15307

1 3

Efficient parallel graph trimming by arc-consistency

9.5 Evaluating stability

One issue is the stability of the trimming algorithms when executing the same algo-
rithm multiple times. In this experiment, we compare 50 testing result over three
chosen graphs, leader-filters.7,livej, and wiki-talk-en. In Fig. 6, the x-axis of plots is
the index of the repeating times. The upper three plots in Fig. 6 depict the number
of traversed edges for three trimming methods, in which the y-axis is the number of
traversed edges. We observe that the number of traversed edges is well bounded for
all three trimming methods. The lower three plots in Fig. 6 depict the running time
for three trimming methods, in which the y-axis is the running time. We observe that
AC4Trim always has a wider variation than other methods. The reason is that paral-
lel AC4Trim is non-deterministic, which means each time the order of removed ver-
tices is different; AC4Trim is not always cache-friendly as vertices are not sequen-
tially traversed; there is a high probability that the performance decreases due to the
unexpected missing cache. Even AC3Trim and AC6Trim are also non-deterministic,
AC3Trim is cache-friendly and AC6Trim is cache-unfriendly; cache-friendliness
does not always lead to a wide performance variation.

9.6 Evaluating scalability

An issue is the scalability of the trimming algorithms when the size of graphs is var-
ied. In this experiment, we test the scalability of the trimming algorithms over the
three largest graphs, i.e., com-friendster, twitter, and twitter-mpi. Using 16 workers,
we vary the number of edges and vertices by randomly sampling at a ratio from 10%
to 100%, respectively. By sampling the edges, we simply remove the unsampled
edges. By sampling the vertices, we simply set the unsampled vertices to DEAD.
As shown in Fig. 7, we can see that the smaller ratio of sampling edges or vertices
always leads to the higher ratio of trimmable vertices, e.g., twitter and twitter-mpi;
but for com-friendster all vertices are always trimmable with any ratio of sampling.
Especially when sampling 10% edges or vertices, nearly 60% of vertices can be
trimmed for twitter and twitter-mpi, and without sampling less than 20% of vertices

com-friendster twitter twitter-mpi

20 40 60 80 100
0

20

40

60

80

100

Edge sample ratio (%)

D
el
et
e
ve

rt
ic
es

ra
ti
o
(%

)

20 40 60 80 100
0

20

40

60

80

100

Vertex sample ratio (%)

D
el
et
e
ve

rt
ic
es

ra
ti
o
(%

)

Fig. 7 The ratio of trimmable vertices

15308 B. Guo, E. Sekerinski

1 3

can be trimmed. This is result is reasonable as more unsampled edges or vertices
will lead to more vertices without out-going edges and thus can be trimmed.

We show the result of sampling edges in Fig. 8, in which the x-axis of plots is the
ratio of sampled edges. The upper three plots in Fig. 8 depict the maximum number
of traversed edges per worker. We observe that the number of traversed edges is
generally increasing with the ratio of the sampled edges. Not surprisingly, AC6Trim
traverses the least number of edges, and AC3Trim traverses the highest number of
edges. But for AC3Trim the number of traversed edges fluctuates when increasing
the sampling ratio of edges as the number of peeling steps � may fluctuate with a
different sampling ratios of edges. The lower three plots in Fig. 8 depict the real run-
ning time. We make three observations.

• Over com-friendster, AC6Trim has the best performance. The reason is that
100% of vertices can be trimmed so that AC4Trim accesses all vertices almost
randomly. In this case, AC4Trim is likely too cache-unfriendly, and the cache
cannot provide an obvious speedup.

• Over twitter and twitter-mpi, AC4Trim has a wide variation and AC4Trim per-
forms worse than AC6Trim in most of cases. The reason is that for AC4Trim
more trimmable vertices lead to the cache being less effective, and sometimes
the cache can provide a speedup but sometimes not; but AC6Trim is cache-
unfriendly, and the cache cannot affect the running time.

• Over twitter and twitter-mpi, AC3Trim always has as good performance as
AC6Trim even if AC3Trim traverse much more edges than AC6Trim. The reason
is that AC3Trim is cache-friendly and achieves a high speedup with caching.

AC3Trim AC4Trim AC6Trim

20 40 60 80 100

227

228

229

230

231

232

233

Edge sample ratio (%)

N
um

be
r
of

tr
av

er
se
d
ed

ge
s com-friendster

20 40 60 80 100

221

222

223

224

225

Edge sample ratio (%)
N
um

be
r
of

tr
av

er
se
d
ed

ge
s twitter

20 40 60 80 100

221

222

223

224

225

226

Edge sample ratio (%)

N
um

be
r
of

tr
av

er
se
d
ed

ge
s twitter-mpi

20 40 60 80 100

214

215

216

217

218

219

220

Edge sample ratio (%)

T
im

e
us
ed

(m
s)

com-friendster

20 40 60 80 100

29

210

211

212

213

214

Edge sample ratio (%)

T
im

e
us
ed

(m
s)

twitter

20 40 60 80 10026

28

210

212

214

Edge sample ratio (%)

T
im

e
us
ed

(m
s)

twitter-mpi

Fig. 8 The scalability of AC3Trim, AC4Trim and AC6Trim by using 16 workers. The number of edges is
varied by randomly sampling from 10 to 100%

15309

1 3

Efficient parallel graph trimming by arc-consistency

Analogously, we show the result of sampling vertices in Fig. 9, in which the
x-axis of plots is the ratio of sampling vertices. There are almost the same trends
as shown in Fig. 8. One difference is in upper three plots; that is, over twitter and
twitter we can see AC4Trim traverse more edges than AC6Trim as the unsampled
vertices are set to ���� and their out-degree counters are still calculated. The other
difference is in lower three plots; that is, over twitter and twitter we can see AC6Trim
performs much better than AC4Trim, except when vertices are 100% sampled. In
this experiment, for implicit graphs loaded into memory, we can see that AC6Trim
is most scalable no matter how many vertices are trimmed and how many edges or
vertices are sampled.

10 Conclusions

In this work, we study graph trimming algorithms for removing vertices without out-
going edges. The arc-consistency algorithms, in particular AC-3, AC-4, and AC-6,
can be applied to graph trimming, leading to the so-called AC-3-based, AC-4-based,
and AC-6-based trimming algorithms, respectively. Based on that, we propose par-
allel AC-4-based and AC-6-based trimming algorithms that have better worst-case
time complexities than AC-3-based. For these three trimming algorithms, we sum-
marize the trend and test results below:

• The common existing graph trimming method is actually parallel AC-3-based,
which has worst-case time complexity. Although AC-4-based and AC-6-based
algorithms have similar worst-case time complexities, the AC-6-based algorithm

AC3Trim AC4Trim AC6Trim

20 40 60 80 100
223

225

227

229

231

233

Vertex sample ratio (%)

N
um

be
r
of

tr
av

er
se
d
ed

ge
s

com-friendster

20 40 60 80 100
217

219

221

223

225

227

Vertex sample ratio (%)
N
um

be
r
of

tr
av

er
se
d
ed

ge
s

twitter

20 40 60 80 100
217

219

221

223

225

227

Vertex sample ratio (%)

N
um

be
r
of

tr
av

er
se
d
ed

ge
s

twitter-mpi

20 40 60 80 100
210

212

214

216

218

220

Vertex sample ratio (%)

T
im

e
us
ed

(m
s)

com-friendster

20 40 60 80 100
27

29

211

213

215

Vertex sample ratio (%)

T
im

e
us
ed

(m
s)

twitter

20 40 60 80 100
27

29

211

213

215

Vertex sample ratio (%)

T
im

e
us
ed

(m
s)

twitter-mpi

Fig. 9 The scalability of AC3Trim, AC4Trim and AC6Trim by using 16 workers. The vertices are varied
by randomly sampling at radio from 10 to 100%

15310 B. Guo, E. Sekerinski

1 3

traverses fewer edges per worker and requires less memory usage than the AC-
4-based one.

• For implicit graphs in which edges are generated on-the-fly, the AC6-based algo-
rithm does not rely on the reversed graphs, unlike the AC4-based algorithm, and
thus is more suitable for trimming implicit graphs.

• For explicit graphs in which all edges are linearly stored in memory, our AC-
6-based algorithm does not always outperform the other methods, but always
traverses the least number of edges and has the best stability and scalability.

In future work, we can apply graph trimming to strongly connected components
(SCC) decomposition as a great percentage of size-1 SCCs can be trimmed in paral-
lel. We also can apply graph trimming to cycle directions as the trimmable verti-
ces cannot be in cycles and can be trimmed in parallel. Both applications depend
on depth-first search (DFS), which is hard to parallelize. However, our trimming
techniques can efficiently trim graphs in parallel if there are a large portion of trim-
mable vertices in graphs. In particular, we can apply the AC-6-based algorithm
to trim the model checking graphs in which edges are expensively calculated on-
the-fly; fewer traversed edges will likely save the running time. In addition, we can
device the graph trimming algorithms for distribute system to address the large scale
parallelism.

Acknowledgements We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

 1. Aggarwal A, Anderson RJ (1988) A random NC algorithm for depth first search. Combinatorica
8(1):1–12

 2. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) DBpedia: a nucleus for a web
of open data. In: The Semantic Web. Springer, Berlin, pp 722–735. https:// doi. org/ 10. 1007/ 978-3-
540- 76298-0_ 52

 3. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks:
membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. Association for Computing Machinery (ACM),
pp 44–54. https:// doi. org/ 10. 1145/ 11504 02. 11504 12

 4. Batagelj V, Zaversnik M (2003) An O(m) algorithm for cores decomposition of networks. CoRR.
arxiv: cs. DS/ 03100 49

 5. Bessière C (1994) Arc-consistency and arc-consistency again. Artif Intell 65(1):179–190. https://
doi. org/ 10. 1016/ 0004- 3702(94) 90041-8

 6. Blelloch GE, Maggs BM (2010) Parallel algorithms. In: Algorithms and theory of computation
handbook: special topics and techniques, pp 25–25

 7. Bloemen V (2015) On-the-fly parallel decomposition of strongly connected components. Master’s
thesis, University of Twente

 8. Bloemen V, Laarman A, van de Pol J (2016) Multi-core on-the-fly SCC decomposition. ACM SIG-
PLAN Not 51(8):1–12. https:// doi. org/ 10. 1145/ 30160 78. 28511 61

 9. Cha M, Haddadi H, Benevenuto F, Gummadi K (2010) Measuring user influence in twitter: the
million follower fallacy. In: Proceedings of the International AAAI Conference on Web and Social
Media, vol 4

 10. Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the
million follower fallacy. In: ICWSM. Washington DC, USA

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/1150402.1150412
http://arxiv.org/abs/cs.DS/0310049
https://doi.org/10.1016/0004-3702(94)90041-8
https://doi.org/10.1016/0004-3702(94)90041-8
https://doi.org/10.1145/3016078.2851161

15311

1 3

Efficient parallel graph trimming by arc-consistency

 11. Chen X, Chen C, Shen J, Fang J, Tang T, Yang C, Wang Z (2018) Orchestrating parallel detec-
tion of strongly connected components on GPUs. Parallel Comput 78:101–114. https:// doi. org/
10. 1016/j. parco. 2017. 11. 001

 12. Chen Y, Guo B, Huang X (2019) �-transitive closures and triangle consistency checking: a new
way to evaluate graph pattern queries in large graph databases. J Supercomput. https:// doi. org/
10. 1007/ s11227- 019- 02762-4

 13. Cooper PR, Swain MJ (1992) Arc consistency: parallelism and domain dependence. Artif Intell
58(1–3):207–235. https:// doi. org/ 10. 1016/ 0004- 3702(92) 90008-l

 14. Coppersmith D, Fleischer L, Hendrickson B, Pinar A (2003) A divide-and-conquer algorithm
for identifying strongly connected components. Tech. rep., Ernest Orlando Lawrence Berkeley
National Laboratory, Berkeley, CA (US). https:// doi. org/ 10. 2172/ 889876

 15. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press,
Cambridge

 16. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory program-
ming. IEEE Comput Sci Eng 5(1):46–55. https:// doi. org/ 10. 1109/ 99. 660313

 17. Defo RK, Wang R, Manjunathaiah M (2019) Parallel BFS implementing optimized decomposi-
tion of space and KMC simulations for diffusion of vacancies for quantum storage. J Comput Sci
36:101018

 18. Dhulipala L, Blelloch G, Shun J (2017) Julienne: a framework for parallel graph algorithms
using work-efficient bucketing. In: Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, pp 293–304

 19. Dib M, Abdallah R, Caminada A (2010) Arc-consistency in constraint satisfaction problems: a
survey. In: 2010 Second International Conference on Computational Intelligence, Modelling and
Simulation. IEEE. https:// doi. org/ 10. 1109/ cimsim. 2010. 18

 20. Erlebach T, Hagerup T, Jansen K, Minzlaff M, Wolff A (2010) Trimming of graphs, with appli-
cation to point labeling. Theory Comput Syst 47(3):613–636

 21. Fleischer LK, Hendrickson B, Pınar A (2000) On identifying strongly connected components in
parallel. In: International Parallel and Distributed Processing Symposium. Springer, pp 505–511.
https:// doi. org/ 10. 1007/3- 540- 45591-4_ 68

 22. Fleischer LK, Hendrickson B, Pinar A (2007) On identifying strongly connected components in
parallel (November 2014), pp 505–511. https:// doi. org/ 10. 1007/3- 540- 45591-4_ 68

 23. Freuder E, Régin JC (1999) Using constraint metaknowledge to reduce arc consistency computa-
tion. Artif Intell 107(1):125–148. https:// doi. org/ 10. 1016/ s0004- 3702(98) 00105-2

 24. Gao Y, Dong W, Wu W, Chen C, Li XY, Bu J (2015) Scalpel: scalable preferential link tomogra-
phy based on graph trimming. IEEE/ACM Trans Netw 24(3):1392–1403

 25. Harabor D, Grastien A (2011) Online graph pruning for pathfinding on grid maps. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol 25

 26. Heule MJ (2019) Trimming graphs using clausal proof optimization. In: International Confer-
ence on Principles and Practice of Constraint Programming. Springer, pp 251–267

 27. Hojati R, Brayton RK, Kurshan RP (1993) BDD-based debugging of designs using language
containment and fair CTL. In: International Conference on Computer Aided Verification.
Springer, pp 41–58. https:// doi. org/ 10. 1007/3- 540- 56922-7_5

 28. Hong S, Chafi H, Sedlar E, Olukotun K (2012) Green-marl: a DSL for easy and efficient graph
analysis. In: Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp 349–362. https:// doi. org/ 10. 1145/ 22484
87. 21510 13

 29. Hong S, Rodia NC, Olukotun K (2013) On fast parallel detection of strongly connected com-
ponents (SCC) in small-world graphs. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis on - SC ‘13. ACM Press. https:// doi.
org/ 10. 1145/ 25032 10. 25032 46

 30. JéJé J (1992) An introduction to parallel algorithms. Addison-Wesley, Reading
 31. Ji Y, Liu H, Huang HH (2018) iSpan: parallel identification of strongly connected components

with spanning trees. In: SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE. https:// doi. org/ 10. 1109/ sc. 2018. 00061

 32. Kirousis LM (1993) Fast parallel constraint satisfaction. Tech. Rep. 1. https:// doi. org/ 10. 1016/
0004- 3702(93) 90063-h

https://doi.org/10.1016/j.parco.2017.11.001
https://doi.org/10.1016/j.parco.2017.11.001
https://doi.org/10.1007/s11227-019-02762-4
https://doi.org/10.1007/s11227-019-02762-4
https://doi.org/10.1016/0004-3702(92)90008-l
https://doi.org/10.2172/889876
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/cimsim.2010.18
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1016/s0004-3702(98)00105-2
https://doi.org/10.1007/3-540-56922-7_5
https://doi.org/10.1145/2248487.2151013
https://doi.org/10.1145/2248487.2151013
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1109/sc.2018.00061
https://doi.org/10.1016/0004-3702(93)90063-h
https://doi.org/10.1016/0004-3702(93)90063-h

15312 B. Guo, E. Sekerinski

1 3

 33. Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Link
Mining: Models, Algorithms, and Applications. Springer, New York, pp 337–357. https:// doi. org/
10. 1007/ 978-1- 4419- 6515-8_ 13

 34. Kunegis J (2013) KONECT. In: Proceedings of the 22nd International Conference on World Wide
Web—WWW ‘13 Companion. ACM, ACM Press. https:// doi. org/ 10. 1145/ 24877 88. 24881 73

 35. Leskovec J, Huttenlocher D, Kleinberg J (2010) Signed networks in social media. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp 1361–1370

 36. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diam-
eters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Mining, pp 177–187

 37. Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. http:// snap.
stanf ord. edu/ data

 38. Lowe G (2016) Concurrent depth-first search algorithms based on Tarjan’s Algorithm. Int J Softw
Tools Technol Transf 18(2):129–147. https:// doi. org/ 10. 1007/ s10009- 015- 0382-1

 39. Mackworth AK (1977) Consistency in networks of relations. Artif Intell 8(1):99–118. https:// doi.
org/ 10. 1016/ 0004- 3702(77) 90007-8

 40. Mackworth AK, Freuder EC (1985) The complexity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Artif Intell 25(1):65–74. https:// doi. org/ 10. 1016/ 0004-
3702(85) 90035-9

 41. Mclendon III W, Hendrickson B, Plimpton SJ, Rauchwerger L (2005) Finding strongly connected
components in distributed graphs. J Parallel Distrib Comput 65(8):901–910. https:// doi. org/ 10.
1016/j. jpdc. 2005. 03. 007

 42. Merz S (2001) Model checking: a tutorial overview. In: Modeling and verification of parallel pro-
cesses. Springer, Berlin, pp 3–38. https:// doi. org/ 10. 1007/3- 540- 45510-8_1

 43. Michael MM (2002) High performance dynamic lock-free hash tables and list-based sets. In: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures—
SPAA ‘02. ACM Press. https:// doi. org/ 10. 1145/ 564870. 564881

 44. Milman G, Kogan A, Lev Y, Luchangco V, Petrank, E (2018) Bq: a lock-free queue with batching.
In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures—SPAA
‘18. ACM Press. https:// doi. org/ 10. 1145/ 32103 77. 32103 88

 45. Mohr R, Henderson TC (1986) Arc and path consistency revisited. Artif Intell 28(2):225–233.
https:// doi. org/ 10. 1016/ 0004- 3702(86) 90083-4

 46. Niu X, Sun X, Wang H, Rong S, Qi G, Yu Y (2011) Zhishi.me—weaving chinese linking open data.
In: The Semantic Web—ISWC 2011. Springer, Berlin, pp 205–220. https:// doi. org/ 10. 1007/ 978-3-
642- 25093-4_ 14

 47. Pelánek R (2007) BEEM: benchmarks for explicit model checkers. In: Model checking software.
Springer, Berlin, pp 263–267. https:// doi. org/ 10. 1007/ 978-3- 540- 73370-6_ 17

 48. Reif JH (1985) Depth-first search is inherently sequential. Inf Process Lett 20(5):229–234. https://
doi. org/ 10. 1016/ 0020- 0190(85) 90024-9

 49. Renault E, Duret-Lutz A, Kordon F, Poitrenaud D (2015) Parallel explicit model checking for gener-
alized Büchi automata. In: Lecture notes in computer science (including subseries Lecture notes in
artificial intelligence and lecture notes in bioinformatics), vol 9035. Springer, Verlag, pp 613–627.
https:// doi. org/ 10. 1007/ 978-3- 662- 46681-0_ 56

 50. Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visu-
alization. In: AAAI. http:// netwo rkrep osito ry. com

 51. Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall Press,
Upper Saddle River

 52. Shun J (2017) Shared-memory parallelism can be simple, fast, and scalable. PUB7255 Association
for Computing Machinery and Morgan & Claypool

 53. Slota GM, Rajamanickam S, Madduri K (2014) BFS and coloring-based parallel algorithms for
strongly connected components and related problems. In: Proceedings of the International Parallel
and Distributed Processing Symposium, IPDPS. IEEE Computer Society, pp 550–559. https:// doi.
org/ 10. 1109/ IPDPS. 2014. 64

 54. Social network F. Friendster: the online gaming social network. https:// archi ve. org/ detai ls/ frien
dster- datas et- 201107

 55. Sun J, Kunegis J, Staab S (2016) Predicting user roles in social networks using transfer learning
with feature transformation. In: 2016 IEEE 16th International Conference on Data Mining Work-
shops (ICDMW). IEEE, pp 128–135. https:// doi. org/ 10. 1109/ icdmw. 2016. 0026

https://doi.org/10.1007/978-1-4419-6515-8_13
https://doi.org/10.1007/978-1-4419-6515-8_13
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1007/s10009-015-0382-1
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(85)90035-9
https://doi.org/10.1016/0004-3702(85)90035-9
https://doi.org/10.1016/j.jpdc.2005.03.007
https://doi.org/10.1016/j.jpdc.2005.03.007
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/3210377.3210388
https://doi.org/10.1016/0004-3702(86)90083-4
https://doi.org/10.1007/978-3-642-25093-4_14
https://doi.org/10.1007/978-3-642-25093-4_14
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1007/978-3-662-46681-0_56
http://networkrepository.com
https://doi.org/10.1109/IPDPS.2014.64
https://doi.org/10.1109/IPDPS.2014.64
https://archive.org/details/friendster-dataset-201107
https://archive.org/details/friendster-dataset-201107
https://doi.org/10.1109/icdmw.2016.0026

15313

1 3

Efficient parallel graph trimming by arc-consistency

 56. Takac L, Zabovsky M (2012) Data analysis in public social networks. In: International Scientific
Conference and International Workshop Present Day Trends of Innovations, vol 1

 57. Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1(2):146–160.
https:// doi. org/ 10. 1137/ 02010 10

 58. Valois JD (1995) Lock-free linked lists using compare-and-swap. In: Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing—PODC ‘95. ACM Press, pp
214–222. https:// doi. org/ 10. 1145/ 224964. 224988

 59. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature
393(6684):440. https:// doi. org/ 10. 1515/ 97814 00841 356. 301

 60. Xiaoping G, Mengyu R, Hong Z, Ping W, Ruijun R, Feng G (2021) Construction technology of
knowledge graph and its application in power grid. In: E3S Web of Conferences, vol 256. EDP Sci-
ences, p 01039

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Bin Guo1 · Emil Sekerinski1

 Emil Sekerinski
 emil@mcmaster.ca

1 Department of Computing and Software, McMaster University, Hamilton, ON, Canada

https://doi.org/10.1137/0201010
https://doi.org/10.1145/224964.224988
https://doi.org/10.1515/9781400841356.301

	Efficient parallel graph trimming by arc-consistency
	Abstract
	1 Introduction
	1.1 An application of graph trimming
	1.2 The new method
	1.3 On-the-fly property
	1.4 Contribution

	2 Preliminaries
	2.1 Graph storage
	2.2 Constraint satisfaction problem
	2.3 Arc-consistency
	2.4 Parallel complexity analysis
	2.5 Atomic primitives

	3 Graph trimming as arc consistency
	4 AC-3-based graph trimming
	4.1 The parallel AC-3-based algorithm

	5 AC-4-based graph trimming
	5.1 The sequential AC-4-based algorithm
	5.2 The parallel AC-4-based algorithm

	6 AC-6-based graph trimming
	6.1 The sequential AC-6-based algorithm
	6.2 The parallel AC-6-based algorithm

	7 Related work
	7.1 Parallel DFS-based SCC decomposition
	7.2 Graph trimming

	8 Implementation
	9 Experiments
	9.1 Graph benchmarks
	9.2 Workload balance
	9.3 Evaluating the number of traversed edges
	9.4 Evaluating the real running time
	9.5 Evaluating stability
	9.6 Evaluating scalability

	10 Conclusions
	Acknowledgements
	References

