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Abstract
Graph analytics attract much attention from both research and industry communi-
ties. Due to its linear time complexity, the k-core decomposition is widely used in 
many real-world applications such as biology, social networks, community detec-
tion, ecology, and information spreading. In many such applications, the data 
graphs continuously change over time. The changes correspond to edge insertion 
and removal. Instead of recomputing the k-core, which is time-consuming, we study 
how to maintain the k-core efficiently. That is, when inserting or deleting an edge, 
we need to identify the affected vertices by searching for more vertices. The state-
of-the-art order-based method maintains an order, the so-called k-order, among all 
vertices, which can significantly reduce the searching space. However, this order-
based method is complicated to understand and implement, and its correctness is not 
formally discussed. In this work, we propose a simplified order-based approach by 
introducing the classical Order Data Structure to maintain the k-order, which signifi-
cantly improves the worst-case time complexity for both edge insertion and removal 
algorithms. Also, our simplified method is intuitive to understand and implement; it 
is easy to argue the correctness formally. Additionally, we discuss a simplified batch 
insertion approach. The experiments evaluate our simplified method over 12 real 
and synthetic graphs with billions of vertices. Compared with the existing method, 
our simplified approach achieves high speedups up to 7.7× and 9.7× for edge inser-
tion and removal, respectively.
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1 Introduction

Given an undirected graph G = (V ,E) , the k-core decomposition is to identify the 
maximal subgraph G′ in which each vertex has a degree of at least k; the core 
number of each vertex u is defined as the maximum value of k such that u is 
contained in the k-core of G [1, 2]. It is well-known that the core numbers can be 
computed with linear running time O(|V| + |E|) [1]. Due to the linear time com-
plexity, the k-core decomposition is easily and widely used in many real-world 
applications. In [2], Kong et al. summarize a large number of applications in biol-
ogy, social networks, community detection, ecology, information spreading, etc. 
Especially in [3], Lesser et al. investigate the k-core robustness in ecological and 
financial networks.

In a survey [4], Malliaros et al. summarize the main research work related to 
k-core decomposition from 1968 to 2019. In static graphs, the computation of 
the core numbers has been extensively studied [1, 5–8]. However, in many real-
world applications, such as determining the influence of individuals in spreading 
epidemics in dynamic complex networks [9] and tracking the actual spreading 
dynamics in dynamic social media networks [10], the data graphs continuously 
change over time. The changes correspond to the insertion and deletion of edges, 
which may have an impact on the core numbers of some vertices in the graph. 
Graphs of this kind are called dynamic graphs. When inserting or removing an 
edge, it is time-consuming to recalculate the core numbers of all vertices; a better 
approach is first to find the affected vertices and then to update their correspond-
ing core numbers. The problem of maintaining the core numbers for dynamic 
graphs is called core maintenance. To the best of our knowledge, little work has 
been done on the k-core maintenance [11–14].

In this work, we focus on core maintenance. More formally, given an undi-
rected dynamic graph G = (V ,E) , after inserting an edge into or removing an 
edge from G, the problem is how to efficiently update the core number for the 
affected vertices. To do this, we first need to identify a set of vertices whose core 
numbers need to be updated (denoted as V∗ ) by traversing a possibly larger set of 
vertices (denoted as V+ ). Then, it is easy to re-compute the new core numbers of 
vertices in V∗ . In practice, an edge removal algorithm for core maintenance [11, 
12] is easy to devise; but for edge insertion, it is challenging. Clearly, an efficient 
edge insertion algorithm should have a small cost for identifying V∗ , which means 
a small ratio |V+|∕|V∗| . In this work, we mainly discuss the edge insertion algo-
rithms for core maintenance.

In [11], Sariyüce et al. propose a traversal algorithm. This insertion algorithm 
searches V∗ only in a local region near the edge that is inserted, which can be 
much faster than recomputing the core numbers for the whole graph. However, 
this insertion algorithm has a high variation in terms of performance due to the 
high variation of the ratio |V+|∕|V∗| . In [12], Zhang et al. propose an order-based 
algorithm, which is the state-of-the-art method for core maintenance. The main 
idea is that an k-order of all vertices is explicitly maintained. Here, the k-order is 
an order of vertices whose core number is determined by the core decomposition 
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algorithm like the BZ algorithm [1]. When a new edge (u,  v) is inserted, the 
potentially affected vertices are checked with such k-order, by which numerous 
vertices are avoided to be checked. In this case, the size of V+ is greatly reduced, 
so the ratio |V+|∕|V∗| is typically much smaller and has less variation compared 
to the traversal algorithm. Thus, the computation time is significantly improved.

However, this order-based approach has two drawbacks. First, the order-based 
edge insertion algorithm is so complicated that it is not intuitive to understand 
easily. This complexity further brings difficulties to the correctness and imple-
mentation; in fact, the proof of correctness for the edge-insert algorithm is not 
formally discussed in [12]. Second, the k-order of the vertices in a graph is main-
tained by two specific data structures: (1) A (double linked lists combined with 
balanced binary search trees) for operations like inserting, deleting, comparing 
the order of two vertices, all of which requires worst-case O(log |V|) time; and (2) 
B (double linked lists combined with heaps) for searching the ordered vertices by 
jumping unnecessary ones, which requires worst-case O(log |V|) time; both data 
structures are complicated to implement.

In this work, we overcome the above drawbacks in [12] by proposing our sim-
plified order-based approach. There are three main contributions summarized 
below:

• First, we introduce a well-known Order Data Structure [15, 16] to effi-
ciently maintain the k-order of vertices in a graph G, and thus, our method 
has improved time complexities. Specifically, this Order Data Structure only 
requires amortized O(1) time for order operations, including inserting, delet-
ing, and comparing the order of two vertices; this is faster than the A data 
structure in [12], especially when data graphs are large. In addition, priority 
queues can be introduced to maintain each affected vertex in k order in the 
worst case O(log|E+|) time ( |E+| is the number of edges adjacent to vertices in 
V+ ); this is also faster than the B data structure in [12] since we normally have 
|E+| ≪ |V| in real data graphs.

• Second, compared to the method in [12], when introducing Order Data Struc-
tures, the A and B data structures can be abandoned so that the order-based core 
maintenance approach can be significantly simplified. We also formally prove 
the correctness of our method.

• Third, our simplified order-based insertion algorithm can be easily extended to 
handle a batch of insertion edges without difficulties since it is common that a 
great number of edges are inserted or removed simultaneously; by doing this, the 
vertices in V+⧵V∗ are possibly avoided to be repeatedly traversed so that the total 
size of V+ is smaller compared to unit insertion.

The rest of this paper is organized as follows. Related work is discussed in Sect. 2. 
The preliminaries are given in Sect.  3. The original order-based algorithm is 
reviewed in Sect.  4. Our simplified order-based insertion and removal algorithms 
are proposed in Sect. 5. Our simplified order-based batch insertion is proposed in 
Sect.  6. We report on extensive performance studies in Sect.  7 and conclude in 
Sect. 8.
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2  Related work

2.1  Core decomposition

In [17], Seidman first introduces k-core to analyze the density of social networks. In [5], 
Cheng et al. propose an external memory algorithm, so-called EMcore, which runs in a 
top-down manner such that the whole graph does not have to be loaded into memory. In 
[8], Wen et al. provide a semi-external algorithm, which requires O(n) size memory to 
maintain the information of vertices. In [6], Khaouid et al. investigate the core decomposi-
tion in a single PC on large graphs using the GraphChi and WebGraph models. In [7], 
Montresoret et al. consider the core decomposition in a distributed system. In addition, 
parallel computation of core decomposition in multicore processors is first investigated in 
[18], where the ParK algorithm was proposed. Based on the main idea of ParK, a more 
scalable PKC algorithm has been reported in [19]. In [20], Chan et al. design distributed 
algorithms for approximate core decomposition.

2.2  Core maintenance

In [21], Zhang et al. prove that the core maintenance is asymmetric: the edge removal is 
bounded for V∗ = V+ , but the edge insertion is unbounded for V∗ ⊆ V+ . In other words, 
to identify V∗ , the edge removal only needs to traverse V∗ ; however, the edge insertion 
can traverse a much larger set of vertices than V∗.

In [22], an algorithm that is similar to the traversal algorithm [11] is given, but this 
solution has quadratic time complexity. In [8], a semi-external algorithm for core main-
tenance is proposed in order to reduce the I/O cost, but this method is not optimized for 
CPU time. In [23, 24], parallel approaches for core maintenance are proposed for both 
edge insertion and removal. There exists some research based on core maintenance. 
In [25], the authors study computing all k-cores in the graph snapshot over the time 
window. In [26], Sun et al. design algorithms to maintain approximate core numbers 
in dynamic hypergraphs. In [27], Liu et al. propose a parallel and batch-dynamic algo-
rithm for approximate k-core decomposition and maintenance.

Furthermore, in [28], the authors explore the hierarchical core maintenance. In [29], 
the core maintenance problem is explored in edge-weighted graphs using the order-
based approach. In [30], a spatial k-core is proposed to model the rapidly growing 
amount of spatial data. Given a set of 2-dimensional data nodes, the spatial k-core is the 
maximal subset of nodes, where each node has at least k close neighbors; two nodes are 
close if their spatial distance is not larger than a given threshold.

3  Preliminaries

Let G = (V ,E) be an undirected unweighted graph, where V(G) denotes the set of 
vertices and E(G) represents the set of edges in G. When the context is clear, we will 
use V and E instead of V(G) and E(G) for simplicity, respectively. Note that, as G is 
an undirected graph, an edge (u, v) ∈ E(G) is equivalent to (v, u) ∈ E(G) . We denote 
the number of vertices and edges of G by n and m, respectively. We define the set 
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of neighbors of a vertex u ∈ V  as u.adj , formally u.adj = {v ∈ V ∶ (u, v) ∈ E} . 
We denote the degree of u in G as u.deg = |u.adj| . In addition, to analyze the 
time complexity, we denote the maximal degree among all vertices in G as 
Deg(G) = max{v ∈ V(G) ∶ v.deg} . We say that a graph G′ is a subgraph of G, 
denoted as G′ ⊆ G , if V(G�) ⊆ V(G) and E(G�) ⊆ E(G) . Given a subset V ′ ⊆ V  , 
the subgraph induced by V ′ , denoted as G(V �) , is defined as G(V �) = (V �,E�) where 
E� = {(u, v) ∈ E ∶ u, v ∈ V �}.

Definition 1 (k-Core) Given an undirected graph G = (V ,E) and an integer k, a 
subgraph Gk of G is called a k-core if it satisfies the following conditions: (1) for 
∀u ∈ V(Gk) , u.deg ≥ k ; (2) Gk is a maximal subgraph.

Here, we have Gk+1 ⊆ Gk , for all k ≥ 0 , and G0 is just G.

Definition 2 (Core Number) Given an undirected graph G = (V ,E) , the core number 
of a vertex u ∈ G(V) , denoted as u.core , is defined as u.core = max{k ∶ u ∈ V(Gk)}.

In other words, u.core is the largest k such that there exists a k-core containing u.

Definition 3 (Subcore) Given an undirected graph G = (V ,E) , a maximal set of ver-
tices S ⊆ V is called a k-subcore if and only if (1) ∀u ∈ S, u.core = k ; (2) the induced 
subgraph G(S) is connected. The subcore that contains vertex u is denoted as sc(u).

3.1  Core decomposition

Given a graph G = (V ,E) , the problem of computing the core number for each 
u ∈ V(G) is called core decomposition. In [1], Batagelj and Zaversnik propose an 
algorithm with a linear running time of O(m + n) , the so-called BZ algorithm. The 
general idea is the peeling process. That is, to compute the k-core Gk of G, the verti-
ces (and their adjacent edges) whose degrees are less than k are repeatedly removed. 
When there are no more vertices to remove, the resulting graph is the k-core of G.

Algorithm 1  BZ algorithm for core decomposition
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Algorithm 1 shows the steps of the BZ algorithm. In initialization, for each vertex 
u ∈ V  , the auxiliary degree u.d is set to |u.adj| and the core number u.core is not 
identified (line 1). The postcondition is that for each vertex u ∈ V  , the u.d equals 
the core number, formally u.d = u.core . We state informally lines 3 - 8 as a loop 
invariant: (1) the vertex u always has the minimum degree u.d since u is removed 
from the min-priority queue Q (line 4); and (2) if u obtains its core number, u.core 
equals to u.d (line 5). The key step is updating v.d for all v ∈ u.adj . That is, v.d are 
decremented by 1 if u.d is smaller than v.d (lines 6 and 7). In this algorithm, the 
min-priority queue Q can be efficiently implemented by bucket sorting [1], by which 
the total running time is optimized to linear O(m + n).

3.2  Core maintenance

The problem of maintaining the core numbers for dynamic graphs G is called core 
maintenance, when edges are inserted into and removed from G continuously. The 
insertion and removal of vertices can be simulated as a sequence of edge insertions 
and removals. Hence, in this paper, we focus on maintaining the core numbers when 
an edge is inserted into or removed from a graph G.

Definition 4 (Candidate Set V∗ and Searching Set V+ ) Given an undirected graph 
G = (V ,E) , when an edge is inserted or removed, a candidate set of vertices, denoted 
as V∗ , have to be computed so that the core numbers of all vertices in V∗ must be 
updated. In order to identify V∗ , a minimal set of searching vertices, denoted as V+ , 
is traversed by repeatedly accessing their adjacent edges.

Definition 4 says that V∗ is identified by traversing all vertices in V+ , so that V∗ 
has to belong to V+ , denoted as V∗ ⊆ V+ . Further, the vertices in V+ ⧵ V∗ are tra-
versed but not candidate vertices. Efficient core maintenance algorithms should have 
a small ratio of |V+|∕|V∗| in order to minimize the cost of computing V∗ . After V∗ is 
identified, the core number of vertices in V∗ can be updated accordingly.

Example 1 Consider the graph G in Fig. 1. The numbers inside the vertices are the 
core numbers. Three vertices, v1 to v3 , have same core numbers of 2; the other verti-
ces, u1 to u1000 , have same core numbers of 1. The whole graph G is the 1-core since 
each vertex has a degree of at least 1; the subgraph induced by {v1, v2, v3} is the 
2-core since each vertex in this subgraph has a degree of at least 2. After inserting 
an edge, for example, (u1, u500) , we observe that the core numbers of all vertices do 
not change according to the peeling process. In this case, the candidate set V∗ = � . 
However, the searching set V+ is different for different edge insertion methods, e.g., 
the order-based algorithm may have V+ = {u1, u2, u3} and the traversal algorithm 
traverse all vertices in ��(u1) with V+ = {u1, u2,… , u1000}.

We present two theorems given in [11, 12, 22] that are useful for discussing 
the correctness of our insertion and removal algorithms.
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Theorem  1 [11, 12, 22] After inserting an edge into or removing an edge from 
G = (V ,E) , the core number of a vertex u ∈ V∗ increases or decreases by at most 1, 
respectively.

Theorem  2 [11, 12, 22] Suppose an edge (u,  v) with K = u.core ≤ v.core is 
inserted in (resp. removed from) G. Suppose V∗ is nonempty. We have the follow-
ing: (1) if u.core < v.core , then u ∈ V∗ and V∗ ⊆ ��(u) (as in Definition 3); (2) if 
u.core = v.core , then both vertices u and v are in V∗ (resp. at least one of u and v 
is in V∗ ) and V∗ ⊆ ��(u) ∪ ��(v) ; (3) the induced subgraph of V∗ ∈ G ∪ {(u, v)} is 
connected.

Theorem  2 suggests that: (1) V∗ only includes the vertices u ∈ V  with 
u.core = K  ; (2) V∗ can be searched in a small local region near the inserted or 
removed edge rather than in a whole graph. That is, to identify V∗ , all vertices in 
V+ are located in the subcores containing u and v.

3.3  Order Data Structure

The well-known Order Data Structure [15, 16] maintains a total order of items, 
denoted as � , with O(1) running time and space. It includes three operations:

• �����(�, x, y) : determine if x precedes y in the total order �.
• ������(�, x, y) : insert a new item y after x in the total order �.
• ������(�, x) : remove an item x from the total order �.

The main idea is that each item x in the total order � is assigned a label to indicate 
the order. In this way, an ����� operation only requires O(1) time for label compari-
sons, and a ������ operation only requires O(1) time for directly removing one item 

Fig. 1  A sample graph G with � = �1�2 in k-order
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without affecting the labels of other items. Significantly, an ������(�, x, y) is com-
plicated: 1) if there exists a valid label between two items x and x’s successor, the 
new item y can be inserted between them by assigning a new label, which requires 
O(1) time; 2) or else, a relabel operation is triggered to rebalance the labels for adja-
cent items, which requires O(1) amortized running time.

In this work, our simplified order-based core maintenance algorithms are based 
on this Order Data Structure. Our time complexity analysis is based on the O(1) 
time for the above three order operations.

4  The order‑based algorithm

In this section, we discuss the state-of-the-art order-based core maintenance 
approach in [12]. This algorithm is based on the k-order, which can be generated 
by the BZ algorithm for core decomposition [1] as in Algorithm 1. The k-order is 
defined as follows.

Definition 5 (k-Order ⪯ [12]) Given a graph G, the k-order ⪯ is defined for any pair 
of vertices u and v over the graph G as follows: (1) when u.core < v.core , u ⪯ v ; (2) 
when u.core = v.core , u ⪯ v if u’s core number is determined before v’s by BZ algo-
rithm (Algorithm 1, line 5).

A k-order ⪯ is an instance of all the possible vertex sequences produced by 
Algorithm 1. When generating the k-order, there may be multiple vertices v ∈ Q 
that have the same value of u.d and can be popped out from Q at the same time 
together (Algorithm 1, line 4). When dealing with these vertices with the same 
value of d, different sequences generate different instances of correct k-order for 
all vertices. There are three heuristic strategies, “small degree first,” “large degree 
first,” and “random.” The experiments in [12] show that the “small degree first” 
consistently has the best performance over all tested real graphs.

For the k-order, transitivity holds, that is, u ⪯ v if u ⪯ w ∧ w ⪯ v . For each 
edge insertion and removal, the k-order will be maintained. Here, �k denotes 
the sequence of vertices in k-order whose core numbers are k. A sequence 
� = �0�1�2 ⋯ over V(G) can be obtained, where �i ⪯ �j if i < j . It is clear that 
⪯ is defined over the sequence of � = �0�1�2 ⋯ . In other words, for all vertices 
in the graph, the sequence � indicates the k-order ⪯.

Example 2 Continually consider the graph G in Fig. 1. The numbers inside the ver-
tices are the core numbers. The k-order of G is shown by �1 and �2 , which is the 
order of core numbers determined by the BZ algorithm (Algorithm 1 line 5); also, 
�1 is determined before �2 so that we have �1 ⪯ �2.
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4.1  The order‑based insertion

The key step for the insertion algorithm is to determine V∗ . To do this, two degrees, 
u.d+ and u.d∗ , for each vertex u ∈ V(G) are maintained in order to identify whether u 
can be added into V∗ or not:

• Remaining degree u.d+ : the number of neighbors after the vertex u in � that can 
potentially support the increment of the current core number, defined as 

• Candidate degree u.d∗ : the number of neighbors before the vertex u in � that can 
potentially have their core number increased, defined as 

Assume that an edge (u,  v) is inserted with K = u.core ≤ v.core . The intuition 
behind the order-based insertion algorithm is as follows. Starting from u, all affected 
vertices with the same core number K (Theorem 2) are traversed in � . For each vis-
ited vertex w ∈ V+ , the value of w.d∗ + w.d+ is maximal as w is visited by k-order. 
In this case, w will be added to V∗ if w.d∗ + w.d+ > K ; otherwise, w is impossible in 
V∗ , which may repeatedly cause other vertices to be removed from V∗ . When all ver-
tices with core number K are traversed, this process terminates and V∗ is identified. 
Finally, the core numbers for all the vertices in V∗ are updated by increasing by 1 
(Theorem 1). Obviously, for all vertices u ∈ V  , the order � along with u.d+ and u.d∗ 
must be maintained accordingly.

Compared to the Traversal Insertion Algorithm [11], the benefit of travers-
ing with k-order is that a large number of unnecessary vertices in V+ ⧵ V∗ can be 
avoided. This is why the order-based insertion algorithm is generally more efficient.

The order-based insertion algorithm is not easy to implement as it needs to trav-
erse the vertices in � efficiently. There are three cases. First, given a pair of verti-
ces u, v ∈ �k , the order-based insertion algorithm needs to test whether u ⪯ v or not 
efficiently. For this, �k is implemented as a double-linked list associated with a data 
structure Ak , which is a binary search tree and each tree node holds one vertex. For 
all u, v ∈ �k , we can test the order u ⪯ v in O(log |�k|) time by using Ak . Second, the 
order-based insertion algorithm needs to efficiently “jump” over a large number of 
non-affected vertices that have u.d∗ = 0 . To do this, �k is also associated with a data 
structure B , which is a min-heap. Here, B supports finding a affected vertex u with 
u.d∗ > 0 sequentially in �k with O(1) time; but it requires O(log |�k|) time to main-
tain the min-heap. Therefore, when maintaining � , both A and B require to update 
accordingly, which requires the worst-case O(|V+| ⋅ log |�k| + O(|V∗|) log |�k+1|) 
time for removing v ∈ V∗ from �k and then inserting v ∈ V∗ at the head of �k+1.

As we can see, the A and B data structures are complicated, which complicates 
understanding and implementation. Additionally, the operations on A and B are 
time-consuming, especially when handling a data graph with large sizes of �k or 
�k+1.

u.d+ = |{w ∈ u.adj ∣ u ⪯ w ∧ w ∉ V+ ⧵ V∗}|

u.d∗ = |{w ∈ u.adj ∣ w ⪯ u ∧ w ∈ V∗}|
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4.2  The order‑based removal

The order-based removal algorithm adopts the same routine used in the traversal 
removal algorithm [11] to compute V∗ . This order-based removal algorithm is based 
on the max-core degree.

Definition 6 (max-core degree mcd ) [11, 12] Given a graph G = (V ,E) , for each 
vertex v ∈ V  , the max-core degree, v.mcd , is the number of v’s neighbors w such 
that w.core ≥ v.core , defined as v.mcd = |{w ∈ v.adj ∶ w.core ≥ v.core}|.

As discussed, edge removal is much simpler than edge insertion since edge 
removal is bounded for V∗ = V+ . Assuming that an edge (u, v) is removed from the 
graph, both u.mcd and v.mcd are updated accordingly. This may repeatedly affect 
other adjacent vertices’ mcd . When the process terminates, all affected vertices u 
that have u.mcd < u.core can be added to V∗ , and then their core numbers are off 
by 1. Obviously, for all vertices u ∈ V∗ , the sequence � along with u.mcd must be 
maintained accordingly.

Compared with the traversal removal algorithm, the difference is that the order-
based removal algorithm needs to maintain � for all vertices in V∗ . That is, all ver-
tices in V∗ with the core number k are deleted from �k and then appended to �k−1 in 
the corresponding k-order. Recall that two associated data structures, A and B , are 
used for the order-based insertion algorithm. Both A and B must be updated accord-
ingly, which requires worst-case O(|V∗| ⋅ (log |Ok| + log |Ok−1|)) time for removing 
v ∈ V∗ from �k and appending v ∈ V∗ at the tail of �k−1 . Analogously to the order-
based insertion, the operations on A and B are time-consuming when handling a 
data graph with a large size of �k or �k−1.

5  The simplified order‑based algorithm

The main reason for the order-based algorithm being complicated and inefficient is 
that two data structures, A and B , are used to maintain � in k-order for all vertices 
in a graph. In this section, we adopt the Order Data Structure [15, 16] to maintain 
the k-order for all vertices. There are two benefits: one is that the k-order opera-
tions, such as inserting, deleting, and comparing the order of two vertices, can be 
optimized to O(1) amortized running time; the other is that the original order-based 
method [12] can be simplified, which makes it easier to implement and to discuss 
the correctness.

Before introducing the new method, we propose a constructed directed acyclic 
graph (DAG) to simplify the statement of our algorithms. Given an undirected 
graph G = (V ,E) with � in k-order, each edge (u, v) ∈ E(G) can be assigned a direc-
tion such that u ⪯ v. By doing this, a directed acyclic graph (DAG) G⃗ = (V , E⃗) 
can be constructed where each edge u ↦ v ∈ E⃗(G⃗) satisfies u ⪯ v . Of course, the 
k-order of G is the topological order of G⃗ . The post of a vertex v in G⃗(V , E⃗) is all 
its successors (outgoing edges), defined by u(G⃗).post = {v ∣ u ↦ v ∈ E⃗(G⃗)} ; the 
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pre of a vertex v in G⃗(V , E⃗) is all its predecessors (incoming edges), defined by 
u(G⃗).pre = {v ∣ v ↦ u ∈ E⃗(G⃗)} . When the context is clear, we use u.post instead of 
u(G⃗).post and u.pre instead of u(G⃗).pre.

In other words, the constructed DAG G⃗ = (V , E⃗) is equivalent to the undirected 
graph G(V,  E) by associating the direction for each edge in k-order. This newly 
defined constructed DAG G⃗ is convenient for describing our simplified order-based 
insertion algorithm.

Lemma 1 Given a constructed DAG G⃗ = (V , E⃗) , for each vertex v ∈ V  , the out-
degree |v.post| is not greater than the core number, |v.post| ≤ v.core.

Proof Since the topological order of G⃗ is the k-core of G, when removing the vertex 
v by executing the BZ algorithm (Algorithm 1, line 5) all the vertices in v.pre are 
already removed. In such a case, the out-degree of v is its current degree. If there 
exists |v.post| > v.core , the value v.core should be equal to |v.post| , which leads to a 
contradiction.   ◻

If inserting an edge into a constructed DAG G⃗ does not violate Lemma 1, no 
maintenance operations are required. Otherwise, G⃗ has to be maintained to re-estab-
lish Lemma 1.

Table 1 summarizes the notations frequently used when describing the algorithm.

5.1  The simplified order‑based insertion

5.2  Theory background

With the concept of the constructed DAG G⃗ , we can introduce our simplified inser-
tion algorithm to maintain the core numbers after an edge is inserted into G⃗ . For 
convenience, based on the constructed DAG G⃗ , we first redefine the candidate 
degree and the remaining degree as in [12].

Definition 7 (Remaining Out-Degree) Given a constructed DAG G⃗(V , E⃗) , the 
remaining out-degree v.d+

out
 is the total number of its successors w without the ones 

that are confirmed not in V∗ due to w.d∗
in
+ w.d+

out
≤ K , denoted as

Definition 8 (Candidate In-Degree) Given a constructed DAG G⃗(V , E⃗) , the candi-
date in-degree v.d∗

in
 is the total number of its predecessors located in V∗ , denoted as

In other words, assuming that K = v.core , the candidate in-degree v.d∗
in

 counts the 
number of predecessors that are already in the new (K + 1)-core; v.d+

out
 counts the 

v.d+
out

= |{w ∈ v.post ∶ w ∉ V+ ⧵ V∗}|

v.d∗
in
= |{w ∈ v.pre ∶ w ∈ V∗}|
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number of successors that can be in the new (K + 1)-core. Therefore, v.d∗
in
+ v.d+

out
 

upper bounds the number of v’s neighbors in the new (K + 1)-core.

Theorem 3 Given a constructed DAG G⃗ = (V , E⃗) by inserting an edge u ↦ v with 
K = u.core ≤ v.core , the candidate set V∗ includes all possible vertices that satisfy: 
1) their core numbers are equal to K, and 2) their total numbers of candidate in-
degree and remaining out-degree are greater than K, denoted as

Proof According to Theorem 1 and Theorem 2, for all vertices in V∗ , we have 1) 
their core numbers equal to K, and 2) their core numbers will increase to K + 1 and 
they can be added to the new (K + 1)-core. By the definition of k-core, for a vertex 
v ∈ V∗ , v must have at least K + 1 adjacent vertices that can be in the new (K + 1)

-core. As v.d∗
in
+ v.d+

out
 is the number of v’s adjacent vertices that can be in the new 

(K + 1)-core, we get v.d∗
in
+ v.d+

out
> K for all vertices v ∈ V∗ .   ◻

Theorem 4 Given a constructed DAG G⃗ = (V , E⃗) by inserting an edge u ↦ v with u 
in �K , all affected vertices w are after u in �K . Starting from u, when w is traversed 
in �K and the V+ , V∗ , w.d∗

in
 , w.d+

out
 are updated accordingly, each time the value of 

w.d∗
in
+ w.d+

out
 is maximal.

Proof For all the vertices in the constructed DAG G⃗ , � is the topological order in 
G⃗ according to the definition of G⃗ . When traversing affected vertices w in G in such 
topological order, each time for w all affected predecessors must have been tra-
versed, so that we get the value of w.d∗

in
 is maximal; also, all the related successors 

∀w ∈ V ∶ w ∈ V∗
≡ (w.core = K ∧ w.d∗

in
+ w.d+

out
> K)

Table 1  Notations Notation Description

G = (V ,E) An undirected graph

G⃗ = (V , E⃗) An constructed DAG by the k-order

u ↦ v ∈ E⃗(G⃗) A directed edge in an constructed 
DAG

� = �0�1 …�k A sequence indicates the k-order ⪯

u(G⃗).d∗
in

The remaining in-degree of u

u(G⃗).d+
out

The candidate out-degree of u

u(G⃗).post The successors of u in G⃗

u(G⃗).pre The predecessor of u in G⃗
u.mcd The max-core degree of u
u.core The core number of u
V∗ Candidate set
V+ Searching set

ΔG⃗ = (V ,ΔE⃗) An inserted graph
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are not yet traversed, so that the value of w.d+
out

 is also maximal. Therefore, the total 
value of w.d∗

in
+ w.d+

out
 is maximal.   ◻

In other words, when traversing the affected vertices w in � , w.d∗
in
+ w.d+

out
 is the 

upper-bound. That means, when traversing the vertices after w in � , w.d∗
in
+ w.d+

out
 

only can be decreased as some vertices can be removed from V∗ . In this case, we can 
safely remove w from V∗ if w.d∗

in
+ w.d+

out
≤ K , since w is impossible in V∗ according 

to Theorem 3. This is the key idea behind the order-based insertion algorithm.

5.3  The algorithm

Algorithm  2 shows the detailed steps when inserting an edge u ↦ v . An issue is 
the implementation of traversing the vertices in �k . We propose to use a Min-Prior-
ity Queue combined with the Order Data Structure (line 4). The idea is as follows: 
1) �k is maintained by the Order Data Structure [15, 16], by which each vertex is 
assigned a label (an integer number) to indicate the order, and 2) all adjacent verti-
ces are added into a Min-Priority Queue by using such labels as their keys. By doing 
this, we can dequeue a vertex from the Min-Priority Queue each time to “jump” over 
unaffected vertices efficiently. In addition, three colors are used to indicate the dif-
ferent statuses for each vertex v in a graph:

• white: v has initial status, v ∉ V∗ ∧ v ∉ V+.
• black: v is traversed and identified as a candidate vertex, v ∈ V∗ ∧ v ∈ V+.
• gray: v is traversed and identified as impossible to be a candidate vertex, 

v ∉ V∗ ∧ v ∈ V+ ≡ v ∈ V+ ⧵ V∗.

Before executing, we assume that for all vertices v ∈ V(G⃗) their d+
out

 and d∗
in

 are cor-
rectly maintained, that is v.d+

out
= |v.post| ∧ v.d∗

in
= 0 . Initially, both V∗ and V+ are 

empty (all vertices are white) and K is initialized to u.core since u ⪯ v for u ↦ v 
(line 1). After inserting an edge u ↦ v with u ⪯ v in � , we have u.d+

out
 increase by 

one (line 2). The algorithm will terminate if u.d+
out

≤ u.core as Lemma 1 is satisfied 
(line 3). Otherwise, u is added into the Min-Priority Queue Q (line 4) for propa-
gation (line 5 to 8). For each w removed from Q (line 6), we check the value of 
w.d∗

in
+ w.d+

out
 . That is, if w.d∗

in
+ w.d+

out
> K , vertex w can be added to V∗ and may 

cause other vertices added in V∗ , which is processed by the Forward procedure 
(line 7). Otherwise, w cannot be added to V∗ , which may cause some vertices to be 
removed from V∗ processed by the Backward procedure (line 8). Here, w.d∗

in
> 0 

means that w is affected, or else w can be omitted since w has no predecessors in V∗ 
(line 8). When Q is empty, this process terminates, and V∗ is obtained (line 5). At the 
ending phase, for all vertices V∗ , their core numbers are increased by one (by Theo-
rem 1), and their d∗

in
 are reset (line 9). Finally, the � is maintained (line 10).
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Algorithm 2  EdgeInsert(G⃗,�, u ↦ v)

The detailed steps of the Forward procedure are shown in Algorithm 3. At first, 
u is added to V∗ and V+ (set from white to black) since u has u.d∗

in
+ u.d+

out
> K 

(line 1). Then, for each u’s successor v whose core number equals K (by Theorem 2), 
v.d∗

in
 increases by one (lines 2 and 3). In this case, v is affected and must be added to 

Q for subsequent propagation (line 4). Note that a vertex v can only be added to Q 
since only the successors of v are enqueued.

Algorithm 3  Forward(u,Q,K,V∗,V+)

The detail steps of the Backward procedure are shown in Algorithm 4. In the 
DoPre(u) procedure, for all u’s predecessors v that are located in V∗ (line 11), v.d+

out
 

is decreased by one since u is set to gray and cannot be added into V∗ any more 
(line 12); in this case, v has to be added into R for propagation if v.d∗

in
+ v.d+

out
≤ K

(line 13). Similarly, in the DoPost(u) procedure, for all u’s successors v that have 
v.d∗

in
> 0 (line 15), v.d∗

in
 is decreased by one (line 16) and added into R for propaga-

tion if v.d∗
in
+ v.d+

out
≤ K (lines 17 and 18).

The detailed steps of the Backward procedure are shown in Algorithm 4. The 
queue R is used for propagation (line 2). The DoPre(u) procedure updates the graph 
when setting u from white to gray or from black to gray, that is, for all u’s 
predecessors in V∗ , all d+

out
 are off by 1 and then added to R for propagation, if its 

d∗
in
+ d+

out
≤ K since they cannot be in V∗ any more (lines 10 - 13). Similarly, the 

DoPost procedure updates the graph when setting u from black to gray, that 
is, for all u’s successors with d∗

in
> 0 , all d∗

in
 are off by 1 and then added to R for 
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propagation if it is in V∗ and its d∗
in
+ d+

out
≤ K (lines 14 - 18). Now, we explain the 

algorithm step by step. At first, w is just added to V+ (set from white to gray) 
since w has w.d∗

in
+ w.d+

out
≤ K (line 1). The queue R is initialized as empty for prop-

agation (line 2) and w is propagated by the DoPre procedure. Of course, w’s d+
out

 
and d∗

in
 are updated (line 3) since all black vertices causing w.d∗

in
 increased will 

be moved after w in � eventually. All the vertices in R are black waiting to be 
propagated (lines 4 to 9). For each u ∈ R , vertex u is removed from R (line 5) and 
removed from V∗ , which sets u from black to gray (line 6). This may require d∗

in
 

and d+
out

 of adjacent vertices to be updated, which is done by the procedures DoPre 
and DoPost, respectively (line 7). To maintain �K , u is first removed from �K and 
then inserted after p in �K , where p initially is w or the previous moved vertices in 
�K (line 8). Of course, u’s d+

out
 and d∗

in
 are updated (line 3) since all black verti-

ces causing u.d∗
in

 increased will be moved after w in � eventually. This process is 
repeated until R is empty (lines 4 to 9).

Algorithm 4  Backward(w,�,K,V∗,V+)

Example 3 Consider inserting an edge to a constructed graph in Fig. 2 obtained from 
Fig. 1. The numbers inside the vertices are the core numbers, and the two numbers 
beside the vertices u1, u2, u3 and u500 are their d∗

in
+ d+

out
 . Initially, we have the min-

priority queue Q = � and K = 1 . In Fig. 2(a), after inserting an edge u1 ↦ u500 , we 
get u1.d+out = 2 > K and therefore u1 is added to Q as Q = {u1} . We begin to propa-
gate Q. First, in Fig. 2(a), u1 is removed from Q to do the Forward procedure since 
u1.d

+
out

+ u1.d
∗
in
= 0 + 2 > K , by which u1 is colored by black, all u1.post ’s d∗

in
 add 
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by 1, and all u1.post are put into Q as Q = {u2, u500} . Second, in Fig.  2(b), u2 is 
removed from Q to do the Forward procedure since u2.d+out + u2.d

∗
in
= 1 + 1 > K , 

by which u2 is colored by black, all u2.post ’s d∗
in

 add by 1, and all u1.post are added 
into Q as Q = {u3, u500} . Third, in Fig. 2(c), however, u3 is removed from Q to do the 
Backward procedure since u3.d∗in + u3.d

+
out

= 1 + 0 ≤ K , by which u3 is colored 
by gray and we have Q = {u500}.

The Backward procedure continues. In Fig.  2(d), we get u2.d+out off by 1 and 
u2.d

∗
in
+ u2.d

+
out

= 1 + 0 ≤ K , so that u2 is set to gray, by which u2 is moved after 
u3 in �1 . In Fig. 2(e), we get u1.d+out off by 1 and u1.d∗in + u1.d

+
out

= 0 + 1 ≤ K , so 
that u1 is also set to gray, by which u1 is moved after u3 in �1 ; also, we get u500.d∗in 
off by 1 and the Backward procedure terminate. Finally, we still need to check the 
last u500 in Q, which can be safely omitted since its d∗

in
 is 0. In this simple example, 

we have V∗ = � ∧ V+ = {u1, u2, u3} and only 4 vertices added to Q. A large number 
of vertices in �1 , e.g., u4 … u1000 , are avoided to be traversed.

Fig. 2  Insert one edge u1 ↦ u500 to a constructed graph G⃗ obtained from Fig. 1
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5.4  Correctness

The key issue of Algorithm 2 is to identify the candidate set V∗ . For correctness, the 
algorithm has to be sound and complete. The soundness implies that all the vertices 
in V∗ are correctly identified,

The completeness implies that all possible candidate vertices are added into V∗,

The algorithm has to ensure both soundness and completeness

which is equivalent to

To argue the soundness and completeness, we first define the vertices in V(G) to 
have the correct candidate in-degrees and remaining out-degrees as

We also define the sequence � for all vertices in V are in k-order as

Theorem 5 (soundness and completeness) For any constructed graph G⃗(V , E⃗) , the 
while-loop in Algorithm 2 (5 to 8) terminates with sound(V∗) and complete(V∗).

Proof The invariant of the outer while-loop (lines 5 to 8 in Algorithm 2) is that all 
vertices in V∗ are sound, but adding a vertex to V∗ (white to black) may lead to 
its successors to be incomplete; for all vertices, their d∗

in
 and d+

out
 counts are correctly 

maintained. All vertices in Q have their core numbers as K, and their d∗
in

 must be 
greater or equal to 0, and all vertices v ∈ V  must be greater than 0 if v is located in 
Q; also, the k-order for all the vertices not in V∗ is correctly maintained:

The invariant initially holds as V∗ = � and for all vertices their d∗
in

 , d+
out

 and 
k-order are correctly initialized; also u is first add to Q for propagation only when 

sound(V∗) ≡ ∀v ∈ V ∶ v ∈ V∗
⇒ v.d∗

in
+ v.d+

out
> K ∧ v.core = K

complete(V∗) ≡ ∀v ∈ V ∶ v.d∗
in
+ v.d+

out
> K ∧ v.core = K ⇒ v ∈ V∗

sound(V∗) ∧ complete(V∗),

∀v ∈ V ∶ v ∈ V∗
≡ v.d∗

in
+ v.d+

out
> K ∧ v.core = K

in∗(V) ≡ ∀v ∈ V ∶ v.d∗
in
= |{w ∈ v.pre ∶ w ∈ V∗}|

out+(V) ≡ ∀v ∈ V ∶ v.d+
out

= |{w ∈ v.post ∶ w ∉ V+ ⧵ V∗}|

∀vi ∈ V ∶ �(V) = (v1, v2,… , vi) ⇒ v1 ⪯ v2 ⪯ ⋯ ⪯ vi

sound(V∗) ∧ complete(V∗ ⧵ Q) ∧ in∗(V) ∧ out+(V)

∧ (∀v ∈ Q ∶ v.core = K ∧ v.d∗
in
≥ 0)

∧ (∀v ∈ V ∶ v.d∗
in
> 0 ⇒ v ∈ Q)

∧ �(V ⧵ V∗)
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u.core = K ∧ u.d+
out

> K ∧ u.d∗
in
= 0 . We now argue that the while-loop preserves 

this invariant:

– sound(V∗) is preserved as v ∈ V  is added to V∗ only if v.d∗
in
+ v.d+

out
> K by the 

Forward procedure; also, v is safely removed from V∗ if v.d∗
in
+ v.d+

out
≤ K by 

the Backward procedure according to Theorem 4.
– complete(V∗ ⧵ Q) is preserved as all the affected vertices v, which may have 

v.d∗
in
+ v.d+

out
> K , are added to Q by the Forward procedure for propagation.

– in∗(V) is preserved as each time when a vertex v is added to V∗ , all its succes-
sors’ d∗

in
 are increased by 1 in the Forward procedure; also each time when a 

vertex v cannot be added to V∗ , the � may change Backward procedure.
– out∗(V) is preserved as each time when a vertex v cannot be added to V∗ , the 

� may change, and the corresponding d+
out

 are correctly maintained by the 
Backward procedure.

– (∀v ∈ Q ∶ v.core = K ∧ v.d∗
in
≥ 0) is preserved as in the Forward procedure, 

the vertices v are added in Q only if v.core = K with v.d∗
in

 add by 1; but v.d∗
in

 
may be reduced to 0 in the Backward procedure when some vertices cannot 
in V∗.

– (∀v ∈ V ∶ v.d∗
in
> 0 ⇒ v ∈ Q) is preserved as v can be added in Q only after 

adding v.d∗
in

 by 1 in the Forward procedure.
– �(V ⧵ V∗) is preserved as the k-order of all vertices v ∈ V+ ⧵ V∗ is correctly 

maintained by the Backward procedure and the k-order of all the other verti-
ces v ∈ V ⧵ V+ is not affected.

We also have to argue the invariant of the inner while-loop in the Backward 
procedure (lines 4 to 9 in Algorithm 4). The additional invariant is that all verti-
ces in R have to be located in V∗ but not sound as their d∗

in
+ d+

out
≤ K:

The invariant initially holds as for w, all its predecessors’ d+
out

 are off by 1 and added 
in R if their d∗

in
+ d+

out
≤ K since w is identified in V+ ⧵ V∗ (gray). We have w ⪯ all 

vertices in V∗ in � , denoted as w ⪯ V∗ , as 1) v can be moved to the head of �K+1 and 
v.core is add by 1 if v is still in V∗ when the outer while-loop terminated, and 2) v 
is removed from V∗ and moved after w in OK . In this case, w.d+

out
 and w.d∗

in
 are can 

be correctly updated to (w.d+
out

+ w.d∗
in
) and 0, respectively. We now argue that the 

while-loop preserves this invariant:

sound(V∗ ⧵ R) ∧ complete(V∗ ⧵ Q) ∧ in∗(V) ∧ out+(V)

∧ (∀v ∈ R ∶ v.core = K ∧ v ∈ V∗ ∧ v.d∗
in
+ v.d+

out
≤ K)

∧ (∀v ∈ Q ∶ v.core = K ∧ v.d∗
in
≥ 0)

∧ (∀v ∈ V ∶ v.d∗
in
> 0 ⇒ v ∈ Q)

∧ �(V ⧵ V∗)
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– sound(V∗ ⧵ R) is preserved as all v ∈ V∗ are added to R if v.d∗
in
+ v.d+

out
≤ K.

– in∗(V) is preserved as each time for a vertex u ∈ R setting from black to gray, 
for all its affected successor, which have d∗

in
> 0 , their d∗

in
 are off by 1; also, u.d∗

in
 

is set to 0 when setting from black to gray since u ⪯ all vertices in V∗ in the 
changed �.

– out∗(V) is preserved as each time for a vertex u ∈ R setting from black to 
gray, for all its affected predecessor, which are in V∗ , their d+

out
 are off by 1; 

also, u.d+
out

 is set to u.d+
out

+ u.d∗
in

 since u ⪯ all vertices in V∗ in the changed �.
– (∀v ∈ R ∶ v.core = K ∧ v ∈ V∗ ∧ v.d∗

in
+ v.d+

out
≤ K) is preserved as each time for 

a vertex v ∈ V∗ , v is checked when v.d∗
in

 or v.d+
out

 is off by 1, and v is added to R if 
v.d∗

in
+ v.d+

out
≤ K.

– �(V ⧵ V∗) is preserved as each vertex v that removed from V∗ by pealing are 
moved following p in OK , where p is w or the previous vertex removed from V∗.

At the termination of the inner while-loop, we get R = � . At the termination of 
the outer while-loop, we get Q = � . The postcondition of the outer while-loop is 
sound(V∗) ∧ complete(V∗) .   ◻

At the ending phase of Algorithm 2, the core numbers of all vertices in V∗ are 
added by 1, and � in k-order is maintained. On the termination of Algorithm 2, the 
core numbers are correctly maintained and also �(V) ∧ in∗(V) ∧ out+(V) , which 
provides the correct initial state for the next edge insertion.

5.5  Complexity

Theorem 6 The time complexity of the simplified order-based insertion algorithm is 
O(|E+| ⋅ log |E+|) in the worst case, where |E+| is the number of adjacent edges for 
all vertices in V+ defined as �E+� =

∑
v∈V+ v.deg.

Proof As the definition of V+ , it includes all traversed vertices to identify V∗ . In 
the Forward procedure, the vertices in V+ are traversed at most once, so do in 
the Backward procedure, which requires worst-case O(|E+|) time. In the while-
loop (Algorithm 2 lines 5 - 10), the min-priority queue Q includes at most |E+| ver-
tices since each related edge of vertices in V+ is added into Q at most once. The 
min-priority queue can be implemented by min-heap, which requires worst-case 
O(|E+| ⋅ log |E+|) time to dequeue all the values. All the vertices in � are maintained 
with Order Data Structure so that manipulating the order of one vertex requires 
amortized O(1) time; there are totally at most |V+| vertices whose order are manipu-
lated, which requires worst-case O(|V+|) amortized time. Therefore, the total worst-
case time complexity is O(|E+| + |E+| ⋅ log |E+| + |V+|) = O(|E+| ⋅ log |E+|) .   ◻

Theorem 7 The space complexity of the simplified order-based insertion algorithm 
is O(n) in the worst case.



 B. Guo, E. Sekerinski 

1 3

Proof Each vertex v is assigned three counters that are v.core , v.d∗
in

 and v.d+
out

 , which 
requires O(3n) space. Both Q and R have at most n vertices, respectively, which 
require worst-case O(2n) space together. Two arrays are required for V+ and V∗ , 
which requires worst-case O(2n) space. All vertices in � are maintained by Order 
Data Structure. For this, all vertices are linked by double-linked lists, which require 
O(2n) space; also, vertices are assigned labels (typically 64 bits integer) to indicate 
the order, which requires O(2n) space. Therefore, the total worst-case space com-
plexity is O(3n + 2n + 2n + 2n + 2n) = O(n) .   ◻

5.6  The simplified order‑based removal

Our simplified order-based removal Algorithm is mostly the same as the original order-
based removal Algorithm in [11, 12], so the details are omitted in this section. The only 
difference is that our simplified order-based removal algorithm adopts the Order Data 
Structure to maintain � , instead of the complicated A and B data structures [12]. In this 
case, the worst-case time complexity can be improved as the Order Data Structure only 
requires amortized O(1) time for each order operation.

5.7  Complexities

Theorem 8 The time complexity of the simplified order-based removal algorithm is 
O(Deg(G) + |E∗|) in the worst case, where �E∗� =

∑
w∈V∗ w.deg.

Proof Typically, the data graph G is stored by adjacent lists. For removing an edge 
(u, v), all edges of the vertex u and v are sequentially traversed, which requires at 
most O(Deg(G)) time. We know that V+ includes all traversed vertices to identify 
the candidate set V∗ and V∗ = V+ in this algorithm. The vertices in V∗ are traversed 
at most once, which requires worst-case O(|E∗|) time. All vertices in V∗ are removed 
from the �K and appended to �K−1 in k-order, which requires O(|V∗|) time as each 
insert or remove operation only needs amortized O(1) time by the Order Data Struc-
ture. Since it is possible that Deg(G) > |E∗| in some cases like V∗ = � , the total 
worst-case time complexity is O(Deg(G) + |E∗| + |V∗|) = O(Deg(G) + |E∗|) .   ◻

Theorem 9 The space complexity of the simplified order-based removal algorithm is 
O(n) in the worst case.

Proof For each vertex v in the graph, v.mcd is used to identify the V∗ , which requires 
O(n) space. All vertices in � are maintained by Order Data Structure, which requires 
O(4n) space. A queue is used for the propagation, which requires worst-case O(n) 
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space. One array is required for V∗ , which requires O(n) space. Therefore, the total 
worst-case space is O(n + 4n + n + n) = O(n) .   ◻

6  The simplified order‑based batch insertion

In practice, it is common for a batch of edges to be inserted into a graph together. 
If multiple edges are inserted one by one, the vertices in V+ ⧵ V∗ may be repeat-
edly traversed. Instead of inserting one by one, we can handle the edge insertion in 
batch. In this section, we extend our simplified order-based unit insertion algorithm 
to batch insertion.

Let ΔG = (V ,ΔE) be an inserted graph to a constructed DAG G⃗ . That is, ΔE(ΔG) 
contains a batch of edges that will be inserted to G⃗ . Each edge u ↦ v ∈ ΔE satisfies 
u ⪯ v in the k-order of G⃗.

Theorem 10 After inserted a graph ΔG = (V ,ΔE) to constructed DAG G⃗ = (V , E⃗) , 
the core number of a vertex v ∈ V(G⃗) increases by at most 1 if v satisfies 
|v.post| ≤ v.core + 1.

Proof For each v ∈ V(G⃗) , Lemma 1 proves that the out-degree of v satisfies 
|v.post| ≤ v.core . Analogies, when inserting ΔG into G⃗ with |v.post| ≤ v.core + 1 , 
the core number can be increased by at most 1, as after inserting the new graph has 
to satisfy v.dout ≤ v.core for all vertices v ∈ V(G⃗) .   ◻

Theorem  10 suggests that in each round we can insert multiples edges 
u ↦ v ∈ ΔE into G⃗ only if |u(G⃗).post| ≤ u(G⃗).core + 1 ; otherwise, u ↦ v has to 
be inserted in next round until all edges are inserted. In the worst case, there are 
Deg(ΔG) round required if each edges u ↦ v ∈ ΔE satisfy u(G⃗).d+

out
= u(G⃗).core.

6.1  The algorithm

Algorithm 5 shows the detailed steps. A batch of edges u ↦ v ∈ ΔE can be inserted 
into G⃗ only if u.d+

out
≤ u.core (lines 3 and 4). When u.d+

out
= u.core + 1 , we can put u 

into the Min-Priority Queue Q for propagation (line 5). Of course, the inserted edges 
are removed from ΔG (line 6). After all possible edges are inserted, the propagation 
is the same as in lines 5-10 of Algorithm 2 (line 7), where K is the core numbers of 
local k-subcore with K = u.core ≤ v.core for an inserted edge u ↦ v . This process 
repeatedly continues until the ΔG becomes empty (line 1).
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Algorithm 5  BatchEdgeInsert(G⃗,�,ΔG)

Example 4 Consider inserting two edges in the constructed graph in Fig.  3. Ini-
tially, the Min-Priority Queue Q is empty, and K is the core number of the corre-
sponding k-subcore. In Fig.  3(a), after inserting two edges, u1 ↦ v2 and u2 ↦ v2 , 
we get u1.d+out = K + 1 = 2 and u2.d+out = K + 1 = 2 , so that these two edges can be 
inserted in batch and we put u1 and u2 in Q as Q = {u1, u2} . We begin to propagate 
Q. First, in Fig.  3(a), u1 is removed from Q to do the Forward procedure since 
u1.d

∗
in
+ u1.d

+
out

= 0 + 2 > K = 1 , by which u1 is colored by black; within subcore 
sc(u1) , all u1.post ’s d∗

in
 are added by 1, and all u1.post are put in Q as Q = {u2} . 

Second, in Fig.  3(b), u2 is removed from Q to do the Forward procedure since 
u2.d

∗
in
+ u2.d

+
out

= 0 + 2 > K = 1 , by which u2 is colored by black; within subcore 
sc(u2) , all u2.post ’s d∗

in
 are added by 1, and all u2.post are put in Q as Q = {u3} . 

Third, in Fig.  3(c), u3 is removed from Q to do the Backward procedure since 
u3.d

∗
in
+ u3.d

+
out

= 1 + 0 ≤ K = 1 , by which u3 is colored by black and u2.d+out off by 
1; however, since u2.d∗in + u2.d

+
out

= 1 + 1 > K = 1 , we have u2 still black and the 
Backward procedure terminates. Finally, in Fig. 3(d), two black vertices, u1 and 
u2 , have increased core numbers as 2; then, they are removed from �1 and inserted 
before the head of �2 to maintain the k-order.

In this example, we have V∗ = {u1, u2} ∧ V+ = {u1, u2, u3} by batch inserting two 
edges together. If we insert u1 ↦ v2 first and then insert u2 ↦ v2 second, the final 
V∗ is same; but V+ is {u1, u2, u3} and {u2, u3} for two inserted edges, respectively. 
In this case, both u2 and u3 are repeatedly traversed, which can be avoided by batch 
insertion.

6.2  Correctness

For each round of the while-loop (lines 2 - 7), the correctness argument is totally the 
same as the single edge insertion in Algorithm 2.
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6.3  Complexities

The total worst-case running time of line 7 is the same as in Algorithm 2, which 
is O(|E+| ⋅ log |E+|) . Typically, for Q, the running time of enqueue and dequeue is 
larger than in Algorithm 2 since each time numerous vertices can be initially added 
into Q for propagation (line 5). The outer while-loop (line 1) runs at most ΔE rounds, 
so that ΔE is checked at most O(Deg(ΔG) ⋅ |ΔE|) round as � can be changed and 
thus the directions of edges in ΔE can be changed. Typically, the majority of edges 
can be inserted in the first round of the while-loop. Therefore, the time complexity 
of Algorithm 5 is O(|E+| ⋅ log |E+| + Deg(ΔG) ⋅ |ΔE|) in the worst case.

The space complexity of Algorithm 5 is the same as Algorithm 2.

Fig. 3  Insert a batch of two edges u1 ↦ v2 and u2 ↦ v2 to a constructed graph G⃗ obtained from Fig. 1
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7  Experiments

In this section, we conduct experimental studies using 12 real and synthetic graphs 
and report the performance of our algorithm by comparing it with the original order-
based method:

– The order-based algorithm [12] with unit edge insertion (I) and edge removal 
(R); Before running, we execute the initialization (Init) step.

– Our simplified order-based with unit edge insertion (OurI) and edge removal 
(OurR); Before running, we execute the initialization (OurInit) step.

– Our simplified order-based batch edge insertion (OurBI).

Note that, the other important compared method, traversal algorithm [11], is omitted 
in our experiments. The reason is that the traversal algorithm is experimentally well-
studied in [12], and the result shows that the order-based algorithm significantly out-
performs the traversal algorithm.

7.1  Experiment setup

The experiments are performed on a desktop computer with an Intel CPU (4 cores, 
8 hyperthreads, 8 MB of last-level cache) and 16 GB of main memory. The machine 
runs the Ubuntu Linux (18.04) operating system. All tested algorithms are imple-
mented in C++ and compiled with g++ version 7.3.0 with the -O3 option. All 
implementations and results are available at github.1

7.2  Tested graphs

We evaluate the performance of different methods over a variety of real-world and 
synthetic graphs, which are shown in Table  2. For simplicity, directed graphs are 
converted to undirected ones in our testing; all of the self-loops and repeated edges 
are removed. That is, a vertex cannot connect to itself, and each pair of vertices can 
connect with at most one edge. The livej, patent, wiki-talk, and roadNet-CA graphs 
are obtained from SNAP.2 The dbpedia, baidu, pokec and wiki-talk-en wiki-links-en 
graphs are collected from the KONECT3 project. The ER, BA, and RMAT graphs are 
synthetic graphs; they are generated by the SNAP4 system using Erdös–Rényi, Bara-
basi–Albert, and the R-MAT graph models, respectively. For these generated graphs, 
the average degree is fixed to 8 by choosing 1,000,000 vertices and 8,000,000 edges.

In Table 2, for the columns, AvgDeg is the average degree for all vertices, Max-
k is the maximum value of k for all vertices, Diameter is the longest shortest path 
between each pair of vertices, and AvgCC is the average clustering coefficient (the 

1 https:// github. com/ Itisb en/ Simpl ified CoreM aint. git.
2 http:// snap. stanf ord. edu/ data/ index. html.
3 http:// konect. cc/ netwo rks/.
4 http:// snap. stanf ord. edu/ snappy/ doc/ refer ence/ gener ators. html.

https://github.com/Itisben/SimplifiedCoreMaint.git
http://snap.stanford.edu/data/index.html
http://konect.cc/networks/
http://snap.stanford.edu/snappy/doc/reference/generators.html
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probability that a pair of randomly chosen connected edges is completed by a third 
edge to form a triangle [31]). We can see that all graphs have millions of edges, their 
average degrees ranged from 2.1 to 22.8, and their maximal core numbers range 
from 3 to 821. For each tested graph, the distribution of the core numbers for all the 
vertices is shown in Fig. 4, where the x-axis is the core numbers and the y-axis is the 

Table 2  Tested real and synthetic graphs

Graph n = |V| m = |E| AvgDeg Max-k Diameter AvgCC

livej 4,847,571 68,993,773 14.23 372 16 0.274,2
patent 6,009,555 16,518,948 2.75 64 22 0.075,7
wikitalk 2,394,385 5,021,410 2.10 131 9 0.052,6
roadNet-CA 1,971,281 5,533,214 2.81 3 849 0.046,4
dbpedia 3,966,925 13,820,853 3.48 20 67 0.000,143,386
baidu 2,141,301 17,794,839 8.31 78 20 0.002,448,50
pokec 1,632,804 30,622,564 18.75 47 162 0.046,821,2
wiki-talk-en 2,987,536 24,981,163 8.36 210 9 0.002,203,51
wiki-links-en 5,710,993 130,160,392 22.79 821 12 0.014,303,2
ER 1,000,000 8,000,000 8.00 11 – –
BA 1,000,000 8,000,000 8.00 8 – –
RMAT 1,000,000 8,000,000 8.00 237 – –

Fig. 4  The distribution of core numbers
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number of the vertices with the corresponding core numbers. For most graphs, many 
vertices have small core numbers, and few have large core numbers. Specifically, 
wiki-link-en has the maximum core numbers up to 821, so that for most of its �k , the 
sizes are around 1000; BA has a single core number as 8 so that all vertices are in the 
single �k . Since all vertices with core number k in �k are maintained in k-order, the 
size of �k is related to the performance of different methods.

7.3  Running time evaluation

In this experiment, we compare the performance of our simplified order-based 
method (OurI and OurR) with the original order-based method (I and R). For 
each tested graph, we first randomly select 100,000 edges out of each tested graph. 
For each graph, we measure the accumulated time for inserting or removing these 
100,000 edges. Each test runs at least 50 times, and we calculate the means with 
95% confidence intervals.

The results for edge insertion are shown in Fig.  5(a). We can see OurI out-
performs I over all tested graphs. Specifically, Table  3 shows the speedups of 
OurI vs. I, which ranges from 1.29 to 7.69. The reason is that the sequence �k 
in k-order is maintained separately for each core number k. Each time insert v into 
or remove v from �k , OurI only requires worst-case O(1) amortized time while I 
requires worst-case O(log |�k|) time. Therefore, over BA we can see OurI gains 
the largest speedup as 7.69 since all vertices have single one core number with 
|�8| = 8, 000, 000 ; over wiki-links-en we can see OurI gains the smallest speedup 
as 1.29 since vertices have core numbers ranging from 0 to 821 such that a large 
portion of order lists has |�k| around 1000.

Similarly, we can see that the edge removal has almost the same trend of speed-
ups in Fig. 5b, which ranges from 1.16 to 5.26 in Table 3. However, we observe that 
the speedups of removal may be less than the insertion over most graphs. The reason 
is that edge removal requires fewer order operations compared with edge insertion. 
That is, unlike the edge insertion, it is not necessary to compare the k-order for two 
vertices by ORDER(�, x, y) when reversing the vertices. The main order operations 
are REMOVE(�, x) and then INSERT(�, x, y) , when the core numbers of vertices 
x ∈ V∗ are off by 1.

In Table 3, for the batch insertion, we can see the speedups of OurBI vs. I are 
much less than the speedups of OurI vs. I, although OurBI may have smaller size 
of V+ than OurI. One reason is that OurBI has to traverse inserted graph ΔG at 
most Deg(ΔG) round, which is the maximum degree of the inserted graph ΔG . The 
other reason is that compared with OurI, OurBI has a larger size of priority queue 
Q, which OurBI requires more running time on enqueue and dequeue operations.

In Table 3, we also observe that the speedups of OurInit vs. Init are a lit-
tle larger than 1. The reason is that for initialization, most of the running time is 
spent on computing the core number for all vertices by the BZ algorithm. After run-
ning the BZ algorithm, OurInit assigns labels for all vertices to construct � in 
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k-order, which requires worst-case O(n) time. However, Init has to add all vertices 
to binary search trees, which requires worst-case O(n log n) time.

7.4  Index space and creation evaluation

For the implementation, OurI and OurR need about 15n space, while I and R need 
about 23n space. That is, our method only requires about 65% space of compared 
methods. Also, for creating the index (computing the initial core numbers and con-
structing the k-order for all vertices), our method is roughly 10% faster than the com-
pared method. This is because OurI and OurR use OM data structures to maintain 

Fig. 5  Compare the running times of two methods
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the k-order of all vertices, which has improved time and space complexities com-
pared with double-linked lists combined with binary search trees and heads used in 
I and R.

7.5  Stability evaluation

We test the stability of different methods over two selected graphs, i.e., wikitalk and 
dbpedia as follows. First, we randomly sample 5, 000, 000 edges and partition them 
into 50 groups, where each group has totally different 100, 000 edges. Second, for 
each group, we measure the accumulated running time of different methods. That is, 
the experiments run 50 times, and each time has totally different inserted or removed 
edges.

Figure 6 shows the results over two selected graphs. We can see that OurI and 
OurR outperform I and R, respectively. More importantly, the performance of 
OurI and OurR is as well-bounded as I and R, respectively. The reason is that 
I and R are well-bounded as the variation of V+ is small for different inserting or 

Table 3  Compare the speedups 
of our method for all graphs

Graph OurI vs I OurBI vs I OurR vs R OurInit 
vs Init

livej 2.04 1.66 1.87 1.02
patent 3.37 2.68 4.41 1.04
wikitalk 1.34 1.63 1.15 1.26
roadNet-CA 4.51 2.95 8.56 1.17
dbpedia 2.49 2.14 1.49 1.08
baidu 1.70 1.68 1.33 1.04
pokec 2.67 2.37 2.87 1.03
wiki-talk-en 1.36 1.45 1.04 1.20
wiki-links-en 1.31 1.16 1.09 1.02
ER 3.97 2.76 9.72 1.08
BA 7.69 5.26 7.42 1.15
RMAT 1.29 1.31 0.97 1.09

Fig. 6  The stability of all methods over selected graphs
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removal edges; also, OurI and OurR have the same size of traversed vertices V+ 
and thus have similar well-bounded performance.

7.6  Scalability evaluation

We test the scalability of different methods over two selected graphs, i.e., wikitalk 
and dbpedia. We vary the number of edges exponentially by randomly sampling 
from 100,000 to 200,000, 400,000, 800,000, 1,600,000, etc. We keep incident ver-
tices of edges for each sampling to generate the induced subgraphs. Over each sub-
graph, we further randomly selected 100,000 edges for insertion or removal. For 
example, over wikitalk, the first subgraph has 100,000 edges, all of which can be 
inserted or removed; the last subgraph has 3,200,000 edges, only 100,000 of which 
can be inserted or removed. Over each subgraph, we measure the accumulated time 
for the insertion or removal of these 100,000 edges. Each test runs at least 50 times, 
and we calculate the average running time.

We show the result in Fig. 7, where the x-axis is the number of sampled edges 
in subgraphs increasing exponentially, and the y-axis is the running times (ms) for 
different methods by inserting or removing 100,000 edges. Table 4 shows the details 
of scalability evaluation, where m′ is the number of edges in subgraphs, #lb  is the 
number of updated labels used by the Order Data Structures of our methods, and 
#rp is the number of outer while-loop repeated rounds for OurBI. We make several 
observations as follows:

• In Fig. 7, a first look reveals that the running time of OurI grows more slowly 
compared with I. The reason is that OurI improves the worst-case running time 
of each order operation of �k from O(log |�k|) to O(1). In this case, the larger 
sampled graphs have a larger size of �k , which can lead to higher speedups. 
However, we can see that the running time of OurR always grows with a similar 
trend compared with R. The reason is that a large percentage of the running time 
is spent on removing edges from the adjacent lists of vertices, which requires tra-
versing all the corresponding edges. Because of this, even OurR has more effi-
cient order operations for � than R, the speedups are not obvious.

Fig. 7  The scalability of all methods over selected graphs
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• In Fig. 7, we observe that OurBI sometimes runs faster than OurI. The reason 
is as follows. From Table  4, compared with OurI, OurBI has less traversed 
vertices ( V+ ), as some repeated traversed vertices can be avoided; also, OurBI 
has less number of updated labels ( #lb ), as the number of relabel process can 
be reduced. However, compared with OurI, OurBI may add much more ver-
tices into priority queue Q, which costs more the running time of enqueue and 
dequeue. Also, OurBI may require several times of repeated rounds ( #rp ), 
which may cost extra running time. Typically, this extra running time is accept-
able as most of the edges can be inserted in the first round, e.g., for dbpedia with 
6.4M sampled edges, the number of batch inserted edges is 100000, 1555, 12, 
and 0 in four rounds, respectively. This is why OurBI sometimes runs faster but 
sometimes slower compared with OurI.

• In Fig. 7, we observe that OurR is always faster than OurI. The reason is as fol-
lows. From Table 4, compared with OurI, OurR has less number of traversed 
vertices ( V∗ ), as OurR has V∗ = V+ ; OurR has less number of updated labels 
( #lb ), as vertices are removed from OK and then appended after OK−1 and thus the 
relabel process is not always triggered.

8  Conclusion and future work

In this work, we study maintaining the k-core of graphs when inserting or remov-
ing edges. We simplify the state-of-the-art core maintenance algorithm and also 
improve its worst-case time complexity by introducing the classical Order Data 
Structure. Our simplified approach is easy to understand, implement, and argue the 

Table 4  The details of scalability evaluation by varying the number of sampled edges over wikitalk and 
dbpedia 

OurI OurBI OurR

m′ |V∗| |V+| #lb |V∗| |V+| #lb #rp |V∗| #lb

0.1M 107K 131K 1.5M 107K 123K 116K 10 107K 107K
0.2M 101K 118K 1.4M 101K 109K 111K 11 101K 101K
0.4M 101K 116K 1.3M 101K 107K 107K 9 101K 101K
0.8M 101K 113K 1.3M 101K 106K 104K 10 101K 101K
1.6M 100K 110K 1.2M 100K 106K 103K 11 100K 100K
3.2M 101K 110K 1.1M 101K 106K 103K 9 101K 101K
0.1M 146K 149K 2.6M 146K 151K 149K 4 146K 146K
0.2M 129K 136K 2.1M 129K 136K 132K 3 129K 129K
0.4M 117K 131K 1.8M 117K 130K 124K 3 117K 117K
0.8M 109K 127K 1.6M 109K 126K 118K 3 109K 109K
1.6M 105K 127K 1.4M 105K 125K 116K 4 105K 105K
3.2M 102K 124K 1.3M 102K 122K 113K 4 102K 102K
6.4M 100K 124K 1.2M 100K 122K 112K 4 100K 100K
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correctness. The experiments show that our approach significantly outperforms the 
existing methods.

The big advantage of our proposed simplified approach is that it is easy to be 
parallelized [32]. In other words, our approach is a preparation step for parallel 
k-core maintenance. Also, the same methodology can be applied to other graphs, 
e.g., weighted graphs and probability graphs. Our approach can be extended to other 
graph algorithms, e.g., maintaining the k-truss in dynamic graphs. Additionally, the 
maintenance of the hierarchical k-core, which involves maintaining the connections 
among different k-cores in the hierarchy, can benefit from our result.
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